
Package: openSkies (via r-universe)
August 31, 2024

Type Package

Title Retrieval, Analysis and Visualization of Air Traffic Data

Version 1.2.1

Date 2024-04-03

Author Rafael Ayala, Daniel Ayala, David Ruiz, Aleix Sellés, Lara
Sellés Vidal

Maintainer Rafael Ayala <rafael.ayala@oist.jp>

Description Provides functionalities and data structures to retrieve,
analyze and visualize aviation data. It includes a client
interface to the 'OpenSky' API <https://opensky-network.org>.
It allows retrieval of flight information, as well as aircraft
state vectors.

Acknowledgements The development of this software is supported by the
Spanish Ministry of Science and Innovation (grant code
PID2019-105471RB-I00) and the Regional Government of Andalusia
(grant code P18-RT-1060).

License CC BY-NC 4.0

Depends grid

Imports httr, ssh, xml2, ggmap, ggplot2, magick, utils, stats, R6,
dbscan, cluster, DBI, RPresto

Suggests knitr, BiocStyle, RUnit, BiocGenerics, rmarkdown, markdown

VignetteBuilder knitr

BugReports https://github.com/Rafael-Ayala/openSkies/issues

NeedsCompilation no

Encoding UTF-8

Repository https://rafael-ayala.r-universe.dev

RemoteUrl https://github.com/rafael-ayala/openskies

RemoteRef HEAD

RemoteSha 6841db8a4cd483260c95146a7531973b692d553a

1

https://opensky-network.org
https://github.com/Rafael-Ayala/openSkies/issues

2 ADSBDecoder

Contents

ADSBDecoder . 2
clusterRoutes . 3
findFlightPhases . 5
getAircraftFlights . 7
getAircraftMetadata . 9
getAircraftStateVectorsSeries . 10
getAirportArrivals . 11
getAirportDepartures . 13
getAirportMetadata . 15
getIntervalFlights . 16
getIntervalStateVectors . 17
getOSNCoverage . 20
getRouteMetadata . 22
getSingleTimeStateVectors . 23
getVectorSetFeatures . 25
getVectorSetListFeatures . 26
openSkiesAircraft . 27
openSkiesAirport . 29
openSkiesFlight . 30
openSkiesRoute . 31
openSkiesStateVector . 32
openSkiesStateVectorSet . 33
plotPlanes . 35
plotRoute . 36
plotRoutes . 37

Index 39

ADSBDecoder An object of class adsbDecoder object representing a decoder used to
decode ADS-B v2 messages

Description

R6Class object of class adsbDecoder representing a decoder used to decode ADS-B v2 messages.
Provides methods for decoding a single message or a batch. Additionally, it includes methods for
transforming hex strings into bits vectors and decoding some individual fields. Decoded messages
are returned as lists with each decoded field.

Usage

ADSBDecoder

clusterRoutes 3

Fields

lastOddPosition Last ground or airborne position message decoded with decodeGroundPositionMessage
or decodeAirbornePositionMessage

lastEvenPosition Last ground or airborne position message decoded with decodeGroundPositionMessage
or decodeAirbornePositionMessage

Methods

hexToBits(hex) Transform a hexadecimal string into its corresponding bits representation, with
higher bits in the first positions. ,

decodeCPR(cprLatEven, cprLonEven, cprLatOdd, cprLonOdd, isAirborne=TRUE) Decodes a
pair of CPR-encoded positions given as longitudes and latitudes, corresponding to a pair of
even and odd messages, obtaining the actual positions for both. The isAirborne argument in-
dicates whether or not the CPR-encoded positions correspond to isAirborne position messages
or not (ground position messages). The result is given as a vector with the decoded positions
for both the even and odd messages, in the following order: even latitude, even longitude, odd
latitude, odd longitude. ,

decodeMessage(message) Decodes a single ADS-B v2 message in the form of a bits vector
(higher bits in the first positions). The last even and odd positional messages are cached
to decode following positional messages. The following message types are supported: aircraft
identification, airborne position, ground position, airborne velocity, and operation status. ,

decodeMessages(messages) Decodes several ADS-B v2 messages in the form of a list of bits
vector (higher bits in the first positions). The following message types are supported: aircraft
identification, airborne position, ground position, airborne velocity, and operation status.

Examples

Decode three messages, using both individual decoding and batch decoding.
The two first messages contain the airborne position.
The third one, the aircraft identification

msg0 <- ADSBDecoder$hexToBits("8D40621D58C386435CC412692AD6")
msg1 <- ADSBDecoder$hexToBits("8D40621D58C382D690C8AC2863A7")
msg2 <- ADSBDecoder$hexToBits("8D4840D6202CC371C32CE0576098")

decoded0 <- ADSBDecoder$decodeMessage(msg0)
decoded1 <- ADSBDecoder$decodeMessage(msg1)
decoded2 <- ADSBDecoder$decodeMessage(msg2)

decodedAll <- ADSBDecoder$decodeMessages(list(msg0, msg1, msg2))

clusterRoutes Cluster aircraft trajectories based on positional features

4 clusterRoutes

Description

Performs clustering of aircraft trajectories positional based on their positional features with several
available methods. The input should be either a list of openSkiesStateVectorSet or an already
computed features matrix as returned by getVectorSetListFeatures. If the input is a list of
vector sets, features will be computed with default settings.

Usage

clusterRoutes(input, method="dbscan", eps=0.5, numberClusters=NULL, ...)

Arguments

input input to be clustered, given as either a list of openSkiesStateVectorSet, or a
matrix of positional features extracted from a list of openSkiesStateVectorSet
objects with getVectorSetListFeatures, that will be used to identify clusters.

method clustering method that will be applied to the positional features. Accepted meth-
ods are: dbscan, kmeans, hclust, fanny, clara, agnes

eps Size of the epsilon neighborhood to be passed to dbscan.This argument is
only used if the selected clustering method is dbscan..

numberClusters number of expected clusters. If NULL or a value lesser than 2 is passed, the
number of clusters will be estimated. This argument is only used if the selected
clustering method is kmeans, hclust, fanny, clara, or agnes

... additional arguments accepted by the selected clustering method

.

Value

An object with clustering results, containing at least a "cluster". For additional details, see the
documentation of cluster.

Examples

if(interactive()){
Retrieve series of state vectors for 7 instances of flights between
Cagliari-Elmas airport and Parma airport

vectors1=getAircraftStateVectorsSeries(aircraft="4d2219",
startTime="2020-11-06 09:20:00", endTime="2020-11-06 10:30:00",
timeZone="Europe/London", timeResolution=300)

vectors2=getAircraftStateVectorsSeries(aircraft="4d226c",
startTime="2020-10-30 09:20:00", endTime="2020-10-30 10:30:00",
timeZone="Europe/London", timeResolution=300)

vectors3=getAircraftStateVectorsSeries(aircraft="4d225b",
startTime="2020-10-29 07:15:00", endTime="2020-10-29 08:25:00",
timeZone="Europe/London", timeResolution=300)

vectors4=getAircraftStateVectorsSeries(aircraft="4d225b",

findFlightPhases 5

startTime="2020-10-25 06:25:00", endTime="2020-10-25 07:35:00",
timeZone="Europe/London", timeResolution=300)

vectors5=getAircraftStateVectorsSeries(aircraft="4d224e",
startTime="2020-10-19 09:30:00", endTime="2020-10-19 10:40:00",
timeZone="Europe/London", timeResolution=300)

vectors6=getAircraftStateVectorsSeries(aircraft="4d225b",
startTime="2020-10-16 09:30:00", endTime="2020-10-16 10:30:00",
timeZone="Europe/London", timeResolution=300)

vectors7=getAircraftStateVectorsSeries(aircraft="4d227d",
startTime="2020-10-12 09:30:00", endTime="2020-10-12 10:30:00",
timeZone="Europe/London", timeResolution=300)

Retrieve state vectors for an outlier flight, corresponding to a flight
between the airports of Sevilla and Palma de Mallorca

vectors8=getAircraftStateVectorsSeries(aircraft = "4ca7b3",
startTime="2020-11-04 10:30:00", endTime="2020-11-04 12:00:00",
timeZone="Europe/London", timeResolution=300)

Group all the openSkiesStateVectorSet objects in a single list

vectors_list=list(vectors1, vectors2, vectors3, vectors4, vectors5, vectors6, vectors7, vectors8)

Extract the matrix of features

features_matrix=getVectorSetListFeatures(vectors_list, scale=TRUE, useAngles=FALSE)

Perform clustering

clustering=clusterRoutes(features_matrix, "dbscan", eps=5)

Display clustering results with flights colored by assigned cluster

plotRoutes(vectors_list, pathColors=clustering$cluster, literalColors=FALSE)
}

findFlightPhases Find the phases of a flight based on altitude, vertical rate and speed

Description

Identifies the different phases of a flight based on the altitude, vertical rate and speed of the aircraft
reported in a time series of state vectors. Identification of flight phases is performed using a fuzzy
logic approach as described in https://arc.aiaa.org/doi/10.2514/1.I010520. Currently, five different
phases are considered: ground, climb, cruise, descent and level flight. Flight phase identification
can also be performed by calling the detect_phases method of an openSkiesFlight object.

6 findFlightPhases

Usage

findFlightPhases(times, altitudes, verticalRates, speeds, window=60)

Arguments

times vector of times in seconds corresponding to the altitude, vertical rate and speed
values.

altitudes vector of altitude values in meters

verticalRates vector of vertical rate values in meters/second.

.

speeds vector of speed values (i.e., the speed at which the aircraft is moving with respect
to the ground) in meters/second

.

window time window in seconds to compute mean values before detecting flight phases.
It is recommended to apply a window in order to reduce the impact of spurious
wrong values, but window application can be effectively turned off by setting
this argument to 1

.

Value

A character vector where each element indicates the phase corresponding to each of the time points.

Examples

In the following example, we will retrieve all state vectors for a flight
along route SCX624, from Harlingen to Minneapolis. We will then identify
the different phases of the flight, and plot it together with altitude values.
Note that when retrieving the state vectors, the username and password should
be substituted by your own, for which you should have received authorization
to access the OpenSky Trino interface

Not run:
state_vectors <- getIntervalStateVectors(aircraft = "ab3da7",

startTime = "2021-12-12 04:20:00",
endTime = "2021-12-12 07:40:00",
username="your_username",
password="your_password")

flights <- state_vectors$split_into_flights()
length(flights)

Only one flight identified in the time period, as expected

flight <- flights[[1]]

Let's extract the data required for detection of flight phases

getAircraftFlights 7

data <- flight$state_vectors$get_values(c("requested_time", "baro_altitude",
"vertical_rate", "velocity"))

data$requested_time <- data$requested_time - data$requested_time[1]

We can now identify flight phases. We will use a time window of 60 s

phases <- findFlightPhases(times=data$requested_time,
altitudes=data$baro_altitude,
verticalRates=data$vertical_rate,
speeds=data$velocity,
window=60)

We can now plot the phases together with the altitude values

library(ggplot2)
data <- cbind(data, phases)
ggplot(data[!is.na(data$baro_altitude),], aes(x = requested_time, y = baro_altitude)) +

geom_line() +
geom_point(aes(color=phases))

End(Not run)

getAircraftFlights Retrieve flights performed by a specified aircraft during a time interval

Description

Retrieves the list of flights registered for a specified aircraft during a given time interval. The
aircraft must be specified using its ICAO 24-bit address. Beginning and end times must be specified
as date-time strings in any format that can be unambiguously converted to POSIXct (such as YYYY-
MM-DD HH:MM:SS).

Usage

getAircraftFlights(aircraft, startTime, endTime, timeZone=Sys.timezone(),
username=NULL, password=NULL, includeStateVectors=FALSE,
timeResolution=NULL, useTrino=FALSE,

includeAirportsMetadata=FALSE, timeOut=60, maxQueryAttempts=1)

Arguments

aircraft string with the ICAO 24-bit address of an aircraft (for example, \"346190\" for
Air Nostrum EC-NCD (ATR 72-600).

startTime date-time string indicating the starting time of the interval for which flights
should be retrieved. Must be in a format that can be unambiguously converted
into POSIXct time. Valid examples are \"2011-03-27 01:30:00\" and \"2011/03/27
01:30:00\".

8 getAircraftFlights

endTime date-time string indicating the ending time of the interval for which flights
should be retrieved. Must be in a format that can be unambiguously converted
into POSIXct time. Valid examples are \"2011-03-28 01:30:00\" and \"2011/03/28
01:30:00\".

timeZone string with the name of the time zone for startTime and endTime. For details on
supported time zones, see help(timezones). By default, the system time zone is
used.

username optional string with the username to use for authentication for the OpenSky API.
By default, no authentication is performed.

password optional string with the password to use for authentication for the OpenSky API.
By default, no authentication is performed.

includeStateVectors

logical indicating if the set of state vectors for each flight should also be re-
trieved. By default, state vectors are not retrieved.

timeResolution time resolution in seconds with which state vectors should be retrieved if includeStateVectors=TRUE.

useTrino logical indicating whether or not to use the OpenSky Trino query interface in-
stead of the API to retrieve state vectors if includeStateVectors=TRUE. If
used, the provided username and password are used for the Trino connection.
By default, the Trino interface is not used.

includeAirportsMetadata

logical indicating if the data about the origin and destination airports of each
flight should also be retrieved. If not, only the ICAO24 code of the airports will
be included.

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

A list of objects of class openSkiesFlight, where each object represents a flight that was per-
formed by the specified aircraft during the specified time interval. See the openSkiesFlight doc-
umentation for details on the fields for the class.

References

https://opensky-network.org/apidoc/rest.html

Examples

Obtain a list with information for all the flights registered for the aircraft
with ICAO 24-bit address 346190 during the 26th of July, 2019.

getAircraftMetadata 9

if(interactive()){
getAircraftFlights("346190", startTime="2019-07-26 00:00:00",
endTime="2019-07-26 23:59:59", timeZone="Europe/Madrid")
}

getAircraftMetadata Retrieve metadata for a specified aircraft

Description

Retrieves the available metadata for a specified aircraft. These include the registration ID for the
aircraft, as well as information about its manufacturer, owner, operator and country of registration,
among others. A single aircraft must be specified using its ICAO 24-bit address.

Usage

getAircraftMetadata(aircraft, timeOut=60, maxQueryAttempts=1)

Arguments

aircraft string with the ICAO 24-bit address of an aircraft (for example, \"3c6444\" for
Lufthansa D-AIBD (Airbus A319).

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

Maximum number of attempts that will be performed when carrying out the
requested query. Failed attempts include timeouts. In the default behavior, a
single attempt will be performed. It should be noted that setting a large number
of maximum attempts can lead to long running times.

Value

An object of class openSkiesAircraft. See the openSkiesAirport documentation for details on
the fields for the class.

References

https://www.icao.int/publications/doc8643/pages/search.aspx

https://www.eurocontrol.int/sites/default/files/content/documents/nm/asterix/archives/asterix-cat021-
asterix-ads-b-messages-part-12-v1.4-072009.pdf

Examples

Obtain metadata for the aircraft with ICAO 24-bit address 3922e2

if(interactive()){
getAircraftMetadata("3922e2")
}

10 getAircraftStateVectorsSeries

getAircraftStateVectorsSeries

Retrieve a series of state vectors received from a specified aircraft dur-
ing a given time interval

Description

Retrieves a time series o state vectors received from a specified aircraft during a given time interval.
A state vector is a collection of data elements that characterize the status of an aircraft at a given
point during a flight (such as latitude, longitude, altitude, etc.)

The time point must be specified as a date-time string in any format that can be unambiguously
converted to POSIXct (such as YYYY-MM-DD HH:MM:SS). Time resolution for the time series
of state vectors must be specified in seconds. Time resolution is limited to 10 s for anonymous
users, and 5 s for registered users.

Usage

getAircraftStateVectorsSeries(aircraft, startTime, endTime,
timeZone=Sys.timezone(), timeResolution,
username=NULL, password=NULL,
useTrino=FALSE, timeOut=60, maxQueryAttempts=1)

Arguments

aircraft string with the ICAO 24-bit address of an aircraft (for example, \"346190\" for
Air Nostrum EC-NCD (ATR 72-600), or a character vector with multiple ICAO
24-bit addresses. In the default behavior, data is retrieved for any aircraft.

startTime date-time string indicating the starting time of the interval for which state vec-
tors should be retrieved. Must be in a format that can be unambiguously con-
verted into POSIXct time. Valid examples are \"2011-03-27 01:30:00\" and
\"2011/03/27 01:30:00\".

endTime date-time string indicating the ending time of the interval for which state vec-
tors should be retrieved. Must be in a format that can be unambiguously con-
verted into POSIXct time. Valid examples are \"2011-03-28 01:30:00\" and
\"2011/03/28 01:30:00\".

timeZone string with the name of the time zone for time. For details on supported time
zones, see help(timezones). By default, the system time zone is used.

timeResolution time resolution in seconds to be used for the requested timeseries of state vec-
tors. Limited to 5 s for anonymous users and 10 s for registered users.

username optional string with the username to use for authentication for the OpenSky API.
By default, no authentication is performed.

password optional string with the password to use for authentication for the OpenSky API.
By default, no authentication is performed.

getAirportArrivals 11

useTrino logical indicating whether or not to use the OpenSky Trino query interface in-
stead of the API to retrieve state vectors. If used, the provided username and
password are used for the Trino connection. By default, the Trino interface is
not used.

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

An openSkiesStateVectorSet object with field time_series=TRUE. For details on the informa-
tion stored in state vectors, see the documentation for openSkiesStateVector and openSkiesStateVectorSet.

References

https://opensky-network.org/apidoc/rest.html

Examples

Obtain a time series of state vectors for the aircraft with ICAO 24-bit
address 403003 for the 8th of October, 2020 between 16:50 and 16:53 (London
time), with a time resolution of 1 minute.

if(interactive()){
getAircraftStateVectorsSeries("403003", startTime = "2020-10-08 16:50:00",
endTime = "2020-10-08 16:52:00", timeZone="Europe/London", timeResolution=60)
}

getAirportArrivals Retrieve flight arrivals into a specified airport

Description

Retrieves the list of flights that landed into a specified airport during a certain time interval. The
aiport must be specified using its ICAO identified. Beginning and end times must be specified as
date-time strings in any format that can be unambiguously converted to POSIXct (such as YYYY-
MM-DD HH:MM:SS).

Usage

getAirportArrivals(airport, startTime, endTime, timeZone=Sys.timezone(),
username=NULL, password=NULL, includeStateVectors=FALSE,
timeResolution=NULL, useTrino=FALSE,

includeAirportsMetadata=FALSE, timeOut=60, maxQueryAttempts=1)

12 getAirportArrivals

Arguments

airport string with the ICAO identifier of an airport (for example, \"EDDF\" for Frank-
furt International Airport.

startTime date-time string indicating the starting time of the interval for which arrivals
should be retrieved. Must be in a format that can be unambiguously converted
into POSIXct time. Valid examples are \"2011-03-27 01:30:00\" and \"2011/03/27
01:30:00\".

endTime date-time string indicating the ending time of the interval for which arrivals
should be retrieved. Must be in a format that can be unambiguously converted
into POSIXct time. Valid examples are \"2011-03-28 01:30:00\" and \"2011/03/28
01:30:00\".

timeZone string with the name of the time zone for startTime and endTime. For details on
supported time zones, see help(timezones). By default, the system time zone is
used.

username optional string with the username to use for authentication for the OpenSky API.
By default, no authentication is performed.

password optional string with the password to use for authentication for the OpenSky API.
By default, no authentication is performed.

includeStateVectors

logical indicating if the set of state vectors for each flight should also be re-
trieved. By default, state vectors are not retrieved.

timeResolution time resolution in seconds with which state vectors should be retrieved if includeStateVectors=TRUE.

useTrino logical indicating whether or not to use the OpenSky Trino query interface in-
stead of the API to retrieve state vectors if includeStateVectors=TRUE. If
used, the provided username and password are used for the Trino connection.
By default, the Trino interface is not used.

includeAirportsMetadata

logical indicating if the data about the origin and destination airports of each
flight should also be retrieved. If not, only the ICAO24 code of the airports will
be included.

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

A list of objects of class openSkiesFlight, where each object represents a flight that that landed
at the specified airport during the specified time interval. See the openSkiesFlight documentation
for details on the fields for the class.

getAirportDepartures 13

References

https://opensky-network.org/apidoc/rest.html

Examples

Obtain a list with information for all the flights that landed at Frankfurt
International Airport on the 29th of January, 2018 between 12 PM and 1 PM,
local time.

if(interactive()){
getAirportArrivals(airport="EDDF", startTime="2018-01-29 12:00:00",
endTime="2018-01-29 13:00:00", timeZone="Europe/Berlin")
}

getAirportDepartures Retrieve flight departures from a specified airport

Description

Retrieves the list of flights that departed from a specified airport during a certain time interval. The
aiport must be specified using its ICAO identified. Beginning and end times must be specified as
date-time strings in any format that can be unambiguously converted to POSIXct (such as YYYY-
MM-DD HH:MM:SS).

Usage

getAirportDepartures(airport, startTime, endTime, timeZone=Sys.timezone(),
username=NULL, password=NULL, includeStateVectors=FALSE,
timeResolution=NULL, useTrino=FALSE,

includeAirportsMetadata=FALSE, timeOut=60, maxQueryAttempts=1)

Arguments

airport string with the ICAO identifier of an airport (for example, \"LEZL\" for Seville
Airport.

startTime date-time string indicating the starting time of the interval for which depar-
tures should be retrieved. Must be in a format that can be unambiguously
converted into POSIXct time. Valid examples are \"2011-03-27 01:30:00\" and
\"2011/03/27 01:30:00\".

endTime date-time string indicating the ending time of the interval for which depar-
tures should be retrieved. Must be in a format that can be unambiguously
converted into POSIXct time. Valid examples are \"2011-03-28 01:30:00\" and
\"2011/03/28 01:30:00\".

timeZone string with the name of the time zone for startTime and endTime. For details on
supported time zones, see help(timezones). By default, the system time zone is
used.

14 getAirportDepartures

username optional string with the username to use for authentication for the OpenSky API.
By default, no authentication is performed.

password optional string with the password to use for authentication for the OpenSky API.
By default, no authentication is performed.

includeStateVectors

logical indicating if the set of state vectors for each flight should also be re-
trieved. By default, state vectors are not retrieved.

timeResolution time resolution in seconds with which state vectors should be retrieved if includeStateVectors=TRUE.

useTrino logical indicating whether or not to use the OpenSky Trino query interface in-
stead of the API to retrieve state vectors if includeStateVectors=TRUE. If
used, the provided username and password are used for the Trino connection.
By default, the Trino interface is not used.

includeAirportsMetadata

logical indicating if the data about the origin and destination airports of each
flight should also be retrieved. If not, only the ICAO24 code of the airports will
be included.

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

A list of objects of class openSkiesFlight, where each object represents a flight that that departed
from the specified airport during the specified time interval. See the openSkiesFlight documen-
tation for details on the fields for the class.

References

https://opensky-network.org/apidoc/rest.html

Examples

Obtain a list with information for all the flights that departed from Seville
Airport on the 25th of July, 2019 between 9 AM and 11 AM, local time.

if(interactive()){
getAirportDepartures(airport="LEZL", startTime="2019-07-25 09:00:00",
endTime="2019-07-25 11:00:00", timeZone="Europe/Madrid")
}

getAirportMetadata 15

getAirportMetadata Retrieve metadata for a specified airport

Description

Retrieves the available metadata for a specified airport. These include its IATA code, common name
and location, among others. A single airport must be specified using its ICAO code.

Usage

getAirportMetadata(airport, timeOut=60, maxQueryAttempts=1)

Arguments

airport string with the ICAO 4-letter code of an airport (for example, \"LEZL\" for
Sevilla Airport.

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

An object of class openSkiesAirport. See the openSkiesAirport documentation for details on
the fields for the class.

References

https://en.wikipedia.org/wiki/List_of_airports_by_IATA_and_ICAO_code

Examples

Obtain metadata for the airport with ICAO code LEZL

if(interactive()){
getAirportMetadata("LEZL")
}

16 getIntervalFlights

getIntervalFlights Retrieve all flights registered during a time interval

Description

Retrieves the list of all flights registered for any aircraft during a given time interval. Beginning and
end times must be specified as date-time strings in any format that can be unambiguously converted
to POSIXct (such as YYYY-MM-DD HH:MM:SS).

Usage

getIntervalFlights(startTime, endTime, timeZone=Sys.timezone(), username=NULL,
password=NULL, includeStateVectors=FALSE,
timeResolution=NULL, useTrino=FALSE,

includeAirportsMetadata=FALSE, timeOut=60, maxQueryAttempts=1)

Arguments

startTime date-time string indicating the starting time of the interval for which flights
should be retrieved. Must be in a format that can be unambiguously converted
into POSIXct time. Valid examples are \"2011-03-27 01:30:00\" and \"2011/03/27
01:30:00\".

endTime date-time string indicating the ending time of the interval for which flights
should be retrieved. Must be in a format that can be unambiguously converted
into POSIXct time. Valid examples are \"2011-03-28 01:30:00\" and \"2011/03/28
01:30:00\".

timeZone string with the name of the time zone for startTime and endTime. For details on
supported time zones, see help(timezones). By default, the system time zone is
used.

username optional string with the username to use for authentication for the OpenSky API.
By default, no authentication is performed.

password optional string with the password to use for authentication for the OpenSky API.
By default, no authentication is performed.

includeStateVectors

logical indicating if the set of state vectors for each flight should also be re-
trieved. By default, state vectors are not retrieved.

timeResolution time resolution in seconds with which state vectors should be retrieved if includeStateVectors=TRUE.

useTrino logical indicating whether or not to use the OpenSky Trino query interface in-
stead of the API to retrieve state vectors if includeStateVectors=TRUE. If
used, the provided username and password are used for the Trino connection.
By default, the Trino interface is not used.

includeAirportsMetadata

logical indicating if the data about the origin and destination airports of each
flight should also be retrieved. If not, only the ICAO24 code of the airports will
be included.

getIntervalStateVectors 17

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

A list of objects of class openSkiesFlight, where each object represents a flight that was registered
during the specified time interval. See the openSkiesFlight documentation for details on the fields
for the class.

References

https://opensky-network.org/apidoc/rest.html

Examples

if(interactive()){
Obtain a list with information for all the flights registered during the 16th
of November, 2019 between 9 AM and 10 AM, London time.

flights <- getIntervalFlights(startTime="2019-11-16 09:00:00",
endTime="2019-11-16 10:00:00", timeZone="Europe/London")

Count the number of registered flights.

length(flights)
}

getIntervalStateVectors

Retrieve all state vectors received during a time interval

Description

Retrieves the list of all state vectors received from any or specified aircrafts during an interval of
time. A state vector is a collection of data elements that characterize the status of an aircraft at a
given point during a flight (such as latitude, longitude, altitude, etc.)

The starting and end time points must be specified as date-time strings in any format that can be
unambiguously converted to POSIXct (such as YYYY-MM-DD HH:MM:SS). Results can be fil-
tered to specific ranges of latitudes and/or longitudes. This function requires access to the OpenSky
Network Trino query interface, and therefore can only be used by registered users that have been
granted access to the Trino interface.

18 getIntervalStateVectors

Usage

getIntervalStateVectors(aircraft=NULL, startTime, endTime,
timeZone=Sys.timezone(), minLatitude=NULL,
maxLatitude=NULL, minLongitude=NULL, maxLongitude=NULL,
minBaroAltitude=NULL, maxBaroAltitude=NULL,
minGeoAltitude=NULL, maxGeoAltitude=NULL,
minVelocity=NULL, maxVelocity=NULL,
minVerticalRate=NULL, maxVerticalRate=NULL,
callSignFilter=NULL, onGroundStatus=NULL,
squawkFilter=NULL, spiStatus=NULL, alertStatus=NULL,
username, password)

Arguments

aircraft string with the ICAO 24-bit address of an aircraft (for example, \"346190\" for
Air Nostrum EC-NCD (ATR 72-600), or a character vector with multiple ICAO
24-bit addresses. In the default behavior, data is retrieved for any aircraft.

startTime date-time string indicating the starting time point of the interval for which state
vectors should be retrieved. Must be in a format that can be unambiguously
converted into POSIXct time. Valid examples are \"2011-03-28 01:30:00\" and
\"2011/03/28 01:30:00\".

endTime date-time string indicating the end time point of the interval for which state
vectors should be retrieved. Must be in a format that can be unambiguously
converted into POSIXct time. Valid examples are \"2011-03-28 01:30:00\" and
\"2011/03/28 01:30:00\".

timeZone string with the name of the time zone for time. For details on supported time
zones, see help(timezones). By default, the system time zone is used.

minLatitude minimum latitude to filter the retrieved state vectors. Must be a value between
-180 and 180. Negative values denote south latitudes, and positive values denote
north latitudes. By default, no filtering based on location is performed.

maxLatitude maximum latitude to filter the retrieved state vectors. Must be a value between
-180 and 180. Negative values denote south latitudes, and positive values denote
north latitudes. By default, no filtering based on location is performed.

minLongitude minimum longitude to filter the retrieved state vectors. Must be a value between
-180 and 180. Negative values denote west longitudes, and positive values de-
note east longitudes. By default, no filtering based on location is performed.

maxLongitude maximum longitude to filter the retrieved state vectors. Must be a value between
-180 and 180. Negative values denote west longitudes, and positive values de-
note east longitudes. By default, no filtering based on location is performed.

minBaroAltitude

minimum barometric altitude to filter the retrieved state vectors. By default, no
filtering based on barometric altitude is performed.

maxBaroAltitude

maximum barometric altitude to filter the retrieved state vectors. By default, no
filtering based on barometric altitude is performed.

getIntervalStateVectors 19

minGeoAltitude minimum geometric altitude to filter the retrieved state vectors. By default,
no filtering based on geometric altitude is performed. It should be noted that
geometric altitude is included in state vectors less frequently than barometric
altitude.

maxGeoAltitude maximum geometric altitude to filter the retrieved state vectors. By default,
no filtering based on geometric altitude is performed. It should be noted that
geometric altitude is included in state vectors less frequently than barometric
altitude.

minVelocity minimum velocity to filter the retrieved state vectors. By default, no filtering
based on velocity is performed.

maxVelocity maximum velocity to filter the retrieved state vectors. By default, no filtering
based on velocity is performed.

minVerticalRate

minimum vertical rate to filter the retrieved state vectors. Ascending aircrafts
have positive vertical rate values, while descending aircrafts have negative val-
ues. By default, no filtering based on vertical rate is performed.

maxVerticalRate

maximum vertical rate to filter the retrieved state vectors. Ascending aircrafts
have positive vertical rate values, while descending aircrafts have negative val-
ues. By default, no filtering based on vertical rate is performed.

callSignFilter string or character vector specifying one or more call signs that will be used
to filter the results of the query, returning only those that match the specified
values. By default, no filtering based on call sign is performed.

onGroundStatus logical indicating if the results should be filtered to return only state vectors with
an on_ground state of TRUE or FALSE (usually, corresponding respectively to
planes on air or on land). By default, no filtering based on on_ground status is
performed.

squawkFilter string or character vector specifying one or more squawk codes that will be used
to filter the results of the query, returning only those that match the specified
values. By default, no filtering based on call sign is performed. Each specified
squawk code should be a 4-character string, containing only digits from 0 to 7.
It should be noted that the meaning of most squawk codes is not universally de-
fined. Only the three following codes are applicable worldwide: 7500 (hijacked
aircraft), 7600 (radio failure) and 7700 (emergency situation). For additional
details, see https://en.wikipedia.org/wiki/List_of_transponder_codes

spiStatus logical indicating if the results should be filtered to return only state vectors
where the SPI (Special Purpose Identification) was turned on (TRUE) or not
(FALSE). By default, no filtering based on emission of SPI pulse is performed.
For details, see https://www.faa.gov/documentLibrary/media/Order/FAA_Order_6365.1A.pdf

alertStatus logical indicating if the results should be filtered to return only state vectors with
the alert flag on (TRUE) or not (FALSE). By default, no filtering based on the
alert flag is performed. For details, see https://www.faa.gov/documentLibrary/media/Order/FAA_Order_6365.1A.pdf

username string with the username to use for authentication for the OpenSky Trino inter-
face. The user must have been granted access to the Trino interface.

password string with the password to use for authentication for the OpenSky Trino inter-
face. The user must have been granted access to the Trino interface.

20 getOSNCoverage

Value

An openSkiesStateVectorSet object with field time_series=FALSE, which contains all the state
vectors that matched the query parameters. For details on the information stored in state vectors,
see the documentation for openSkiesStateVector and openSkiesStateVectorSet.

References

https://opensky-network.org/impala-guide https://en.wikipedia.org/wiki/List_of_transponder_codes
https://www.faa.gov/documentLibrary/media/Order/FAA_Order_6365.1A.pdf

Examples

Obtain a list with the state vectors for all aircrafts that flew over the city
of Seville the 21st of July, 2019 between 7 AM and 8 PM Spanish time.
Note that the username and password should be substituted by your own,
for which you should have received authorization to access the OpenSky
Trino query interface

Not run:
state_vectors <- getIntervalStateVectors(startTime = "2019-07-21 07:00:00",

endTime = "2019-07-21 20:00:00",
timeZone = "Europe/Madrid",
minLatitude = 37.362796,
minLongitude = -6.019819,
maxLatitude = 37.416954,
maxLongitude = -5.939724,
username="your_username",
password="your_password")

Group the state vectors into flights

flights <- state_vectors$split_into_flights()

Plot the flight paths

paths <- vector(mode = "list", length = length(flights))

for(i in 1:length(flights)) {
paths[[i]] <- flights[[i]]$state_vectors

}

plotRoutes(paths, pathColors = rainbow(length(flights)))

End(Not run)

getOSNCoverage Retrieve coverage of the OpenSky Network for a given day

getOSNCoverage 21

Description

Retrieves the coverage of the OpenSky Network across all regions for a given day. The date must
be specified as a date-time string in any format that can be unambiguously converted to POSIXct
(such as YYYY-MM-DD).

Usage

getOSNCoverage(time, timeZone=Sys.timezone(), timeOut=60, maxQueryAttempts=1)

Arguments

time date-time string indicating the day for which coverage should be retrieved. Must
be in a format that can be unambiguously converted into POSIXct time. Valid
examples are \"2011-03-27\" and \"2011/03/27\". The exact time of the day can
also be supplied in the date-time string, but coverage data is only available with
single-day resolution.

timeZone string with the name of the time zone for startTime and endTime. For details on
supported time zones, see help(timezones). By default, the system time zone is
used.

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

A dataframe with three columns, named "latitude", "longitude" and "altitude". Each row represents
an area of coverage data. The first two columns indicate the coordinates of the center of each area,
which extends 0.1 degrees North and South and 0.15 degrees East and West from its center. The
third column, "altitude", indicates the lowest altitude value received for any aircraft in the area.
This provides an estimate of the coverage for that given area, with lower values indicating a better
coverage since low-flying aircraft are more difficult to detect due to a higher chance that obstacles
can block the line of sight between the aircraft and the receptors in the area.

The "altitude" values are obtained from the barometric altitude sensors, and therefore is prone to
the same errors as such sensors (e.g., negative altitudes might be reported). Areas not covered by
any of the rows in the dataframe do not have any coverage.

References

https://opensky-network.org/forum/questions/640-interpreting-the-response-from-the-coverage-api-
endpoint

22 getRouteMetadata

Examples

Obtain a data frame with coverage of the OpenSky Network for the 13th of
September, 2020.

if(interactive()){
getOSNCoverage("2020-09-13", timeZone="Europe/London")
}

getRouteMetadata Retrieve metadata for a specified route

Description

Retrieves the available metadata for a specified flight route. These include the airports of origin and
destination, the operator IATA code and the flight number.

Usage

getRouteMetadata(route, includeAirportsMetadata=FALSE, timeOut=60, maxQueryAttempts=1)

Arguments

route string with the call sign of a route (for example, "AAL683" for American Air-
lines flight number 683.

includeAirportsMetadata

logical indicating if the data about the origin and destination airports of the route
should also be retrieved. If not, only the ICAO24 code of the airports will be
included.

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

An object of class openSkiesRoute. See the openSkiesRoute documentation for details on the
fields for the class.

References

https://en.wikipedia.org/wiki/Flight_number

getSingleTimeStateVectors 23

Examples

Obtain metadata for the route with call sign AAL683

if(interactive()){
getRouteMetadata("AAL683")
}

getSingleTimeStateVectors

Retrieve all state vectors received at a given time point

Description

Retrieves the list of all state vectors received from any or specified aircrafts at a single time point.
A state vector is a collection of data elements that characterize the status of an aircraft at a given
point during a flight (such as latitude, longitude, altitude, etc.)

The time point must be specified as a date-time string in any format that can be unambiguously
converted to POSIXct (such as YYYY-MM-DD HH:MM:SS). Results can be filtered to specific
ranges of latitudes and/or longitudes. The extent of the data than can be accessed varies depending
on if login details are provided: * For anonymous users: + If no aircraft is specified or multiple
aircrafts are specified: historical data cannot be retrieved. If a time point was specified, it will be
ignored, and data for current time will be returned. + If a single aircraft is specified, historical
data can be retrieved. * For registered users: + If no aircraft is specified or multiple aircrafts are
specified: historical data of up to 1 hour ago from current time can be retrieved. + If a single aircraft
is specified, historical data can be retrieved.

Usage

getSingleTimeStateVectors(aircraft=NULL, time=NULL, timeZone=Sys.timezone(),
minLatitude=NULL, maxLatitude=NULL, minLongitude=NULL,
maxLongitude=NULL, username=NULL, password=NULL,
useTrino=FALSE, timeOut=60, maxQueryAttempts=1)

Arguments

aircraft string with the ICAO 24-bit address of an aircraft (for example, \"346190\" for
Air Nostrum EC-NCD (ATR 72-600), or a character vector with multiple ICAO
24-bit addresses. In the default behavior, data is retrieved for any aircraft.

time date-time string indicating the time point for which state vectors should be re-
trieved. Must be in a format that can be unambiguously converted into POSIXct
time. Valid examples are \"2011-03-28 01:30:00\" and \"2011/03/28 01:30:00\".
If no time point is specified, data is retrieved for current time.

timeZone string with the name of the time zone for time. For details on supported time
zones, see help(timezones). By default, the system time zone is used.

24 getSingleTimeStateVectors

minLatitude minimum latitude to filter the retrieved state vectors. Must be a value between
-180 and 180. Negative values denote south latitudes, and positive values denote
north latitudes. By default, no filtering based on location is performed.

maxLatitude maximum latitude to filter the retrieved state vectors. Must be a value between
-180 and 180. Negative values denote south latitudes, and positive values denote
north latitudes. By default, no filtering based on location is performed.

minLongitude minimum longitude to filter the retrieved state vectors. Must be a value between
-180 and 180. Negative values denote west longitudes, and positive values de-
note east longitudes. By default, no filtering based on location is performed.

maxLongitude maximum longitude to filter the retrieved state vectors. Must be a value between
-180 and 180. Negative values denote west longitudes, and positive values de-
note east longitudes. By default, no filtering based on location is performed.

username optional string with the username to use for authentication for the OpenSky API.
By default, no authentication is performed.

password optional string with the password to use for authentication for the OpenSky API.
By default, no authentication is performed.

useTrino logical indicating whether or not to use the OpenSky Trino query interface in-
stead of the API to retrieve state vectors if includeStateVectors=TRUE. If
used, the provided username and password are used for the Trino connection.
By default, the Trino interface is not used.

timeOut number of seconds after which the query will time out and return a NULL result.
In the default behavior, timeout will be reached after 60 seconds.

maxQueryAttempts

On rare occassions, queries to the OpenSky Network live API can return mal-
formed responses. This is the maximum number of attempts to obtain a properly
formatted response when carrying out the requested query. It should be noted
that the query will still terminate if a timeout is reached. In the default behavior,
a single attempt will be performed. It is not recommended to change this to a
very large number, since it can lead to long running times.

Value

If a single state vector matching the query conditions is found, an openSkiesStateVector object.
If multiple state vectors matching the query conditions are found, an openSkiesStateVectorSet
object with field time_series=FALSE. For details on the information stored in state vectors, see the
documentation for openSkiesStateVector and openSkiesStateVectorSet.

References

https://opensky-network.org/apidoc/rest.html

Examples

Obtain a list with the state vectors for all aircrafts currently flying over
an area covering Switzerland.

getSingleTimeStateVectors(minLatitude=45.8389, maxLatitude=47.8229,

getVectorSetFeatures 25

minLongitude=5.9962, maxLongitude=10.5226)

Obtain the state vector for aircraft with ICAO 24-bit address 403003 for
the 8th of October, 2020 at 16:50 London time.

if(interactive()){
getSingleTimeStateVectors(aircraft="403003", time="2020-10-08 16:50:00",
timeZone="Europe/London")
}

getVectorSetFeatures Get positional features of an openSkiesStateVectorSet object

Description

Retrieves positional features of an openSkiesStateVectorSet object. Features will be uniformly
interpolated from the observed values.

Usage

getVectorSetFeatures(stateVectorSet, resamplingSize=15, method="fmm", fields=NULL)

Arguments

stateVectorSet object of class openSkiesStateVectorSet for which positional features should
be extracted.

resamplingSize number of uniformly separated interpolation points at which the values of the
position features should be calculated.

method method to be used for interpolation. "linear" will result in linear interpolation,
while "fmm", "periodic", or "natural" will result in different types of spline in-
terpolation.

fields character vector indicating the names of the fields of the openSkiesStateVector
objects that should be included in the extracted positional features. In the default
behavior, fields=NULL and only latitude and longitude values will be used.

Value

A vector with positional features of the provided openSkiesStateVectorSet object. The vector
alternates values of longitude and latitude at each interpolated point, unless a character vector with
valid names of fields of openSkiesStateVector objects is provided through fields, in which case
values of the specified fields are alternated, in the specified order.

26 getVectorSetListFeatures

Examples

Extract positional features for a time series of state vectors for the
aircraft with ICAO 24-bit address 403003 for the 8th of October, 2020 between
16:50 and 16:53 (London time), with a time resolution of 1 minute.

if(interactive()){
vectors <- getAircraftStateVectorsSeries(aircraft="4ca7b3",
startTime="2020-11-04 10:30:00", endTime="2020-11-04 12:00:00",
timeZone="Europe/London", timeResolution=300)

features <- getVectorSetFeatures(vectors)
}

getVectorSetListFeatures

Get positional features of a list of openSkiesStateVectorSet objects

Description

Retrieves positional features of a list of openSkiesStateVectorSet objects. Features will be uni-
formly interpolated from the observed values for all the openSkiesStateVectorSet objects.

Usage

getVectorSetListFeatures(stateVectorSetList, resamplingSize=15, method="fmm",
scale=TRUE, fields=NULL)

Arguments

stateVectorSetList

list of objects of class openSkiesStateVectorSet for which positional features
should be extracted.

resamplingSize number of uniformly separated interpolation points at which the values of the
position features should be calculated.

method method to be used for interpolation. "linear" will result in linear interpolation,
while "fmm", "periodic", or "natural" will result in different types of spline in-
terpolation.

scale logical indicating if the matrix of features should be scaled by applying the
scale function. This can be desirable if the features are going to be used for
clustering.

fields character vector indicating the names of the fields of the openSkiesStateVector
objects that should be included in the extracted positional features. In the default
behavior, fields=NULL and only latitude and longitude values will be used.

openSkiesAircraft 27

Value

A matrix with positional features of the provided list of openSkiesStateVectorSet objects. Each
row of the matrix represents a vector of features for each of the openSkiesStateVectorSet objects.
Each vector alternates values of longitude and latitude at each interpolated point, unless a character
vector with valid names of fields of openSkiesStateVector objects is provided through fields,
in which case values of the specified fields are alternated, in the specified order.

Examples

Extract positional features for a time series of state vectors for the
aircraft with ICAO 24-bit address 403003 for the 8th of October, 2020 between
16:50 and 16:53 (London time), with a time resolution of 1 minute.

if(interactive()){
vectors1=getAircraftStateVectorsSeries(aircraft="345107",
startTime="2020-11-04 11:55:00", endTime="2020-11-04 13:10:00",
timeZone="Europe/London", timeResolution=300)

vectors2=getAircraftStateVectorsSeries(aircraft = "4ca7b3",
startTime="2020-11-04 10:30:00", endTime="2020-11-04 12:00:00",
timeZone="Europe/London", timeResolution=300)

vectors_list=list(vectors1, vectors2)

features_matrix=getVectorSetListFeatures(vectors_list, scale=FALSE,
fields=c("longitude", "latitude", "true_track"))

}

openSkiesAircraft An R6Class object representing an aircraft

Description

R6Class object representing an aircraft. Contains information about the ICAO 24-bit code of the
aircraft, its registration code, its country of origin, its manufacturer and its operator. New in-
stances can be manually created by providing values for at least the ICAO24 field. Alternatively,
getAircraftMetadata will return an openSkiesAirport object corresponding to the airport with
the provided ICAO 24-bit code.

Usage

openSkiesAircraft

Fields

ICAO24 String with the ICAO 24-bit aicraft address associated to the aircraft in hexadecimal format

registration String with the aircraft registration code, also called tail number

origin_country String with the country where the aircraft is registered

28 openSkiesAircraft

last_state_vector An object of class openSkiesStateVector representing the last known state
vector for the aircraft

state_vector_history An object of class openSkiesStateVectorSet representing the history
of all known state vectors for the aircraft

manufacturer_name String with the name of the manufacturer of the aircraft

manufacturer_ICAO String with the ICAO code of the manufacturer of the aircraft

model String with the aicraft model

serial_number String with the serial number of the aircraft

line_number String with the line number of the aircraft. Usually only provided for Boeing air-
crafts. Line numbers specify the order in which airframes of a particular product line were
assembled.

ICAO_type_code String with the ICAO code for the model of aircraft

ICAO_aircraft_class String with the ICAO code for the type of aircraft. ICAO aircraft classes
provide more general groups than ICAO type codes

owner String with the name of the registered aircraft owner

operator String with the name of the aircraft operator

operator_call_sign String with the callsign of the aircraft operator

operator_ICAO String with the ICAO code of the aircraft operator

operator_IATA String with the IATA code of the aircraft operator

first_flight_date String with the date when the first flight for the aircraft was registered. This
information is usually not available when retrieving information from the OpenSky API

category_description String with physical information about the aircraft provided by the ADS-
B emitter unit

Methods

get_values(field, removeNAs=FALSE) This method retrieves the value of field for all the state
vectors stored in the openSkiesStateVectorSet object. If removeNAs=TRUE (by default,
removeNAs=FALSE), missing values are removed from the output. Otherwise, NA is returned
in place of missing items.

Examples

Create an openSkiesAircraft object corresponding to the aircraft with
ICAO 24-bit address 3922e2

if(interactive()){
test_aircraft <- getAircraftMetadata("3922e2")
test_aircraft
}

openSkiesAirport 29

openSkiesAirport An R6Class object representing an airport

Description

R6Class object representing an airport. Contains information about the name of the airport, its IATA
and ICAO codes, and its location. New instances can be manually created by providing values for at
least the fields name, city, country, longitude and latitude. Alternatively, getAirportMetadata
will return an openSkiesAirport object corresponding to the airport with the provided ICAO code.

Usage

openSkiesAirport

Fields

name String with the name of the airport

ICAO String with the ICAO code of the airport

IATA String with the IATA code of the airport

longitude Longitude of the position of the airport

latitude Latitude of the position of the airport

altitude Altitude of the position of the airport

city String with the name of the city where the airport is located

municipality String with the ISO 3166-2 code where the airport is located

region String with the name of the region where the airport is located

country String with the ISO 3166-1 alpha-2 code of the country where the airport is located

continent String with the ISO 3166-1 alpha-2 code of the continent where the airport is located

type String with information about the type of airport

website String with the URL for the website of the airport

wikipedia_entry String with the URL for the Wikipedia entry of the airport

reliable_position Logical value indicating if the position of the airport is reliable

GPS_code String with the GPS code of the airport

Examples

Create an openSkiesAirport object corresponding to Sevilla Airport

if(interactive()){
test_airport <- getAirportMetadata("LEZL")
test_airport
}

30 openSkiesFlight

openSkiesFlight An R6Class object representing a specific flight

Description

R6Class object representing a specific flight performed by a certain aircraft. Contains information
about the aircraft that performed the flight, the airports of origin and destination, the times of depar-
ture and arrival and the callsign under which the flight was performed. New instances can be manu-
ally created by providing values for at least the fields ICAO24, departure_time and arrival_time.
Alternatively, getAircraftFlights, getAirportDepartures, getAirportArrivals getIntervalFlights
will all return lists of openSkiesFlight objects corresponding to the flights that match the query
conditions.

Usage

openSkiesFlight

Fields

ICAO24 String with the ICAO 24-bit aicraft address associated to the aircraft in hexadecimal format

call_sign String with callsign under which the flight was performed

state_vectors Object of class openSkiesStateVectorSet with field time_series = TRUE con-
taining the state vectors received from the aircraft during the flight

origin_airport String with the ICAO 4-letter code of the airport of origin

destination_airport String with the ICAO 4-letter code of the destination airport

departure_time String with the date and time at which the aircraft took off

arrival_time String with the date and time at which the aircraft arrived at its destination

Methods

get_moment_state_vector(time, includeFuture = TRUE) This method retrieves the state vec-
tor closest with the timestamp closest to the provided time, which must be supplied as a date-
time string. In the default behaviour, includeFuture=TRUE and the retrieved vector will be
the one with the closest timestamp, regardless of if this is earlier or later than the provided
time. If includeFuture=FALSE, the closest earlier state vector will be retrieved. ,

get_duration() This method returns the duration of the flight in seconds ,

distance_to_flight(flight, numberSamples=15, samplesAggregationMethod="concatenated", method="euclidean", additionalFields=NULL)
This method calculates the distance to the provided flight, which must be another object
of class openSkiesFlight. Both openSkiesFlight objects will be resampled to the number
of points specified by numberSamples. If samplesAggregationMethod="concatenated",
a vector of values indicating the distance between the flights at each point is returned. If
samplesAggregationMethod="average", the average distance is returned. By default, method="euclidean"
and euclidean distances are calculated. Other possible values of method are all values accepted
by dist. By default, additionalFields=NULL, and only latitude and longitude values will

openSkiesRoute 31

be included in the features vectors used to calculate distances. Additional fields can be spec-
ified by providing their names as a character vector through additionalFields. The names
should be valid names of fields of openSkiesStateVector objects.

detect_phases(time_window, use_baro_altitude = FALSE) This method detects the phases
of the flight, applying the findFlightPhases function. A time window will be applied to
calculate mean values of altitude, vertical rate and speed. Its length is provided in seconds
through the time_window argument. Setting this value to 1 effectively disables the usage of a
time window. By default, use_baro_altitude=FALSE and geo altitude values will be used to
calculate the flight phases. If use_baro_altitude=TRUE, barometric altitude values will be
used instead.

Examples

Create a list of openSkiesFlight objects corresponding to all the flights that
landed at Frankfurt International Airport on the 29th of January, 2018 between
12 PM and 1 PM

if(interactive()){
test_flights <- getAirportArrivals(airport="EDDF", startTime="2018-01-29 12:00:00",
endTime="2018-01-29 13:00:00", timeZone="Europe/Berlin")
test_flights
}

openSkiesRoute An R6Class object representing a flight route

Description

R6Class object representing a flight route, usually operated by a commercial airline. Contains infor-
mation about the callsign under which the route is operated, the operator itself and the airports of ori-
gin and destination. New instances can be manually created by providing values for at least the fields
call_sign, origin_airport and destination_airport. Alternatively, getRouteMetadata will
return an openSkiesRoute object corresponding to the route with the provided callsign.

Usage

openSkiesRoute

Fields

call_sign String with callsign of the route

origin_airport String with the ICAO 4-letter code of the airport of origin

destination_airport String with the ICAO 4-letter code of the destination airport

operator_IATA String with the IATA code for the operator of the route

flight_number String with the flight number for the route. The callsign is usually composed of
an airline identifier and the flight number

32 openSkiesStateVector

Examples

Create an openSkiesRoute object corresponding to the American Airlines route
with callsign AAL683

if(interactive()){
test_route <- getRouteMetadata("AAL683")
test_route
}

openSkiesStateVector An R6Class object representing an aircraft state vector

Description

R6Class object representing an aircraft state vector. Contains information about status at a given
timepoint of an aircraft, including its position, altitude and velocity. New instances can be manually
created by providing values for at least the ICAO24, longitude and latitude fields. Alternatively,
getSingleTimeStateVectors will return an openSkiesStateVector object if a single state vector
matching the query conditions is found.

Usage

openSkiesStateVector

Fields

ICAO24 String with the ICAO 24-bit aicraft address associated to the aircraft in hexadecimal format

call_sign String with the callsign assigned to the aircraft

origin_country String with the country where the aircraft is registered

requested_time String with the time point for which the state vector was requested

last_position_update_time String with the time at which the last position update for the aircraft
was received, or NULL if no position update had been received in the past 15 s

last_any_update_time String with the time at which the last update (of any type) for the aircraft
was received

longitude Longitude value for the position of the aircraft

latitude Latitude value for the position of the aircraft

baro_altitude Barometric altitude of the aircraft in meters

geo_altitude Geometric altitude of the aircraft in meters

on_ground Logical indicating if the aircraft is at a surface position

velocity velocity of the aircraft over the ground in meters/second

true_track True track angle in degrees of the current aircraft course. Measured clockwise from
the North (0º)

openSkiesStateVectorSet 33

vertical_rate Vertical movement rate of the aircraft in meters/second. Positive means the air-
craft is climbing, and negative means it is descending

squawk String with the squawk code for the aircraft transponder

special_purpose_indicator Logical indicating if the transponder of the aircraft has emitted a
Special Purpose Indicator pulse

position_source String with the source of the position information for this state vector. Can be
ADS-B (Automatic Dependent Surveillance–Broadcast), ASTERIX (All Purpose Structured
Eurocontrol Surveillance Information Exchange) or MLA (Multilateration)

Examples

Obtain the state vector for aircraft with ICAO 24-bit address 403003 for
the 8th of October, 2020 at 16:50 London time.

if(interactive()){
test_stateVector <- getSingleTimeStateVectors(aircraft="403003",
time="2020-10-08 16:50:00", timeZone="Europe/London")
test_stateVector
}

openSkiesStateVectorSet

An R6Class object representing an ensemble of aircraft state vectors

Description

R6Class object representing an ensemble of aircraft state vectors. Contains a list of objects of class
openSkiesStateVector. The ensemble can either represent a time series of state vectors of a single
aircraft, or represent state vectors corresponding to multiple different aircrafts. For details on the in-
formation stored in each state vector, see the documentation for the openSkiesStateVector class.
New instances can be manually created by providing a list of openSkiesStateVector objects.
Alternatively, getSingleTimeStateVectors and getAircraftStateVectorsSeries will return
an openSkiesStateVectorSet object if multiple state vectors matching the query conditions are
found.

Usage

openSkiesStateVectorSet

Fields

state_vectors List of openSkiesStateVector objects

time_series Logical indicating if the openSkiesStateVectorSet object represents a time series
of state vectors of a single aircraft.

34 openSkiesStateVectorSet

Methods

add_state_vector(state_vector) This method adds a new state vector to the openSkiesAir-
craft object, which will be set as the new last_state_vector and will be added to state_vector_history.
state_vector should be an openSkiesStateVector object

get_values(fields, removeNAs=FALSE, unwrapAngles=FALSE) This method retrieves all the
values for the specified fields in the ensemble of openSkiesStateVector objects. One or
several field names can be provided through the fields argument. The values will be re-
turned as a vector if a single field was provided, or as a data frame if multiple fields were
provided. Field names should match those of the fields of openSkiesStateVector objects. If
removeNAs=TRUE, NA values will be omitted from the output (if multiple fields were provided,
only state vectors for which all of the fields were NA will be omitted). If unwrapAngles=TRUE
and values for the true_track field were requested, the values will be unwrapped to be a
smooth succession of values without sudden discontinuities when crossing from 360º to 0º
(this will likely make multiple values become higher than 360).

get_uniform_interpolation(n, fields, method="fmm") This method obtains a data frame
with an interpolation of the specified fields along the route represented by the state vector
set across n evenly distributed points. fields should be a character vector with the name of
the fields that will be interpolated. Only numeric fields are accepted. method represents the
interpolation method. "linear" will result in linear interpolation, while "fmm", "periodic", or
"natural" will result in different types of spline interpolation.

get_time_points_interpolation(fields, time_field, timestamps, method="fmm") This method
obtains a data frame with an interpolation of the specified fields along the route represented
by the state vector set across the specified timestamps. fields should be a character vector
with the name of the fields that will be interpolated. Only numeric fields are accepted. method
represents the interpolation method. "linear" will result in linear interpolation, while "fmm",
"periodic", or "natural" will result in different types of spline interpolation. time_field indi-
cates the name of the field of the openSkiesStateVectorSet object from which the timestamps
of the original state vectors will be retrieved. Possible values are c("requested_time",
"last_position_update_time", "last_any_update_time"). The time points at which
the interpolations should be calculated should be provided as a vector through the timestamps
argument.

sort_by_field(field, decreasing=FALSE) This method sorts the state vectors of the open-
SkiesStateVectorSet object by the values of the field provided through field. By default,
decreasing=FALSE and the state vectors will be sorted by increasing order of field. If
decreasing=TRUE, decreasing order will be used.

split_into_flights(timeOnLandThreshold=300, timeDiffThreshold=1800) This method au-
tomatically detects different flights contained in the openSkiesStateVectorSet object and re-
turns a list of objects of class openSkiesFlight. Separate flights are detected based on two
conditions: either the aircraft staying on ground for a given amount of time, or the aircraft
not sending any status update for a given period. The thresholds are controlled, respectively,
through the timeOnLandThreshold and timeDiffThreshold arguments. In both cases, the
value should be provided in seconds.

remove_redundants(updateType="position") This method removes redundant state vectors,
i.e., those that do not contain updated information with respect to older state vectors. What is
considered as a redundant state vector is defined by the updateType argument. If updateType="position",
which is also the default behavior, state vectors for which there was no update of positional

plotPlanes 35

information will be considered as redundant (even if there might have been an update of other
information). If updateType="any", only state vectors for which no information was updated
(positional or any other) will be considered as redundant. It should be noted that applying
this method will also sort the state vectors from older to more recent. The method is in-
tended to be applied to time series, and therefore a warning will be given if it is applied on an
openSkiesStateVectorSet with field time_series=FALSE.

Examples

Obtain a time series of state vectors for the aircraft with ICAO 24-bit
address 403003 for the 8th of October, 2020 between 16:50 and 16:53 (London
time), with a time resolution of 1 minute.

if(interactive()){
test_stateVectorSet <- getAircraftStateVectorsSeries("403003", startTime="2020-10-08 16:50:00",
endTime="2020-10-08 16:52:00", timeZone="Europe/London", timeResolution=60)
test_stateVectorSet
}

plotPlanes Plot the location of a set of aircrafts

Description

Draws the location of a set of aircrafts given in their state vectors on a ggmap object. The planes
will be oriented according to the path they are following.

Usage

plotPlanes(stateVectors, ggmapObject=NULL, plotResult=TRUE, paddingFactor=0.2,
iconSize=1)

Arguments

stateVectors list of state vectors. Each state vector must be represented by a list with, at least,
fields "longitude", "latitude" and "trueTrack".

ggmapObject optional ggmap object on which the route will be drawn. By default, a new
ggmap object will be created, covering the necessary space plus an amount of
padding determined by the paddingFactor argument.

plotResult whether or not the resulting ggmap object with the added route should be plotted.

paddingFactor amount of padding to add to the map if no ggmap object is provided. The added
padding will be equal to paddingFactor multiplied by the height and width of
the map (determined by the difference between the maximum and minimum
longitudes/latitudes).

iconSize scaling factor for the size of the plane icons.

36 plotRoute

Value

A ggmap object with added paths and points representing the route.

Examples

Plot the position of aircrafts currently flying over an area covering
Switzerland.

if(interactive()){
vectors <- getSingleTimeStateVectors(minLatitude=45.8389, maxLatitude=47.8229,

minLongitude=5.9962, maxLongitude=10.5226)

plotPlanes(vectors)
}

plotRoute Plot a single aircraft route

Description

Draws a given route on a ggmap object. The route must be given as an object of class openSkiesStateVectorSet
with field time_series=TRUE.

Usage

plotRoute(stateVectorSet, pathColor="blue", ggmapObject=NULL, plotResult=TRUE,
paddingFactor=0.2, lineSize=1, lineAlpha=0.5, pointSize=0.3,
pointAlpha=0.8, arrowLength=0.3)

Arguments

stateVectorSet object of class openSkiesStateVectorSet with field time_series=TRUE with
positional information of an aircraft along different timepoints.

pathColor color of the path and points that will be used to draw the route. Must be a value
accepted by ggmap’s color attributes.

ggmapObject optional ggmap object on which the route will be drawn. By default, a new
ggmap object will be created, covering the necessary space plus an amount of
padding determined by the paddingFactor argument.

plotResult whether or not the resulting ggmap object with the added route should be plotted.

paddingFactor amount of padding to add to the map if no ggmap object is provided. The added
padding will be equal to paddingFactor multiplied by the height and width of
the map (determined by the difference between the maximum and minimum
longitudes/latitudes).

lineSize width of the line that connects the points of the route in the plot.

lineAlpha opacity of the line that connects the points of the route in the plot.

plotRoutes 37

pointSize size of the points of the route in the plot.

pointAlpha opacity of the points of the route in the plot.

arrowLength length of the segment arrows in centimeters.

Value

A ggmap object with added paths and points representing the route.

Examples

Plot the route followed by the aircraft with ICAO address 4ca7b3
during the 4th of November, 2020.

if(interactive()){
vectors <- getAircraftStateVectorsSeries(aircraft="4ca7b3",
startTime="2020-11-04 10:30:00", endTime="2020-11-04 12:00:00",
timeZone="Europe/London", timeResolution=300)

plotRoute(vectors)
}

plotRoutes Plot several aircraft routes

Description

Draws the given routes on a ggmap object. The routes must be given as a list of objects of class
openSkiesStateVectorSet, all of them with field time_series=TRUE.

Usage

plotRoutes(stateVectorSetList, pathColors="blue", ggmapObject=NULL,
plotResult=TRUE, paddingFactor=0.2, lineSize=1, lineAlpha=0.5, pointSize=0.3,
pointAlpha=0.8, includeArrows=FALSE, arrowLength=0.3, literalColors=TRUE)

Arguments

stateVectorSetList

list of objects of class openSkiesStateVectorSet with field time_series=TRUE,
each of them containing positional information of given aircraft along different
timepoints.

pathColors If literalColors=TRUE, vector with the colors of the paths and points that will
be used to draw the routes. If the number of routes is greater than the number of
colors, these will be rotated. Each color must be a value accepted by ggmap’s
color attributes. Alternatively, if literalColors=FALSE, a factor defining a
certain feature for each route, in which case a color will be assigned for each
level of the factor.

38 plotRoutes

ggmapObject optional ggmap object on which the routes will be drawn. By default, a new
ggmap object will be created, covering the necessary space plus an amount of
padding determined by the paddingFactor argument.

plotResult wether or not the resulting ggmap object with the added routes should be plotted.

paddingFactor amount of padding to add to the map if no ggmap object is provided. The added
padding will be equal to paddingFactor multiplied by the height and width of
the map (determined by the difference between the maximum and minimum
longitudes/latitudes).

lineSize width of the line that connects the points of the routes in the plot.

lineAlpha opacity of the line that connects the points of the routes in the plot.

pointSize size of the points of the routes in the plot.

pointAlpha opacity of the points of the routes in the plot.

includeArrows logical indicating if arrows showing the direction of the flight should be added
to the plot. The default value of FALSE can speed up the generation of the plot
considerably when a large amount of routes are plotted.

arrowLength length of the segment arrows in centimeters.

literalColors logical indicating if the values provided through pathColors should be inter-
preted as color names/codes. By default, TRUE. If set to FALSE, pathColors
will be interpreted as a factor, and a color for each different value will be auto-
matically assigned.

Value

A ggmap object with added paths and points representing the routes.

References

https://opensky-network.org/apidoc/rest

Examples

Plot the routes followed by two aircrafts departing from Sevilla airport the
4th of November, 2020.

if(interactive()){
vectors1=getAircraftStateVectorsSeries(aircraft="345107",
startTime="2020-11-04 11:55:00", endTime="2020-11-04 13:10:00",
timeZone="Europe/London", timeResolution=300)

vectors2=getAircraftStateVectorsSeries(aircraft = "4ca7b3",
startTime="2020-11-04 10:30:00", endTime="2020-11-04 12:00:00",
timeZone="Europe/London", timeResolution=300)

plotRoutes(list(vectors1, vectors2), pathColors=c("red", "blue"))
}

Index

ADSBDecoder, 2

cluster, 4
clusterRoutes, 3

dbscan, 4
dist, 30

findFlightPhases, 5, 31

getAircraftFlights, 7, 30
getAircraftMetadata, 9, 27
getAircraftStateVectorsSeries, 10, 33
getAirportArrivals, 11, 30
getAirportDepartures, 13, 30
getAirportMetadata, 15, 29
getIntervalFlights, 16, 30
getIntervalStateVectors, 17
getOSNCoverage, 20
getRouteMetadata, 22, 31
getSingleTimeStateVectors, 23, 32, 33
getVectorSetFeatures, 25
getVectorSetListFeatures, 4, 26

openSkiesAircraft, 9, 27
openSkiesAirport, 9, 15, 29
openSkiesFlight, 5, 8, 12, 14, 17, 30, 34
openSkiesRoute, 22, 31
openSkiesStateVector, 11, 20, 24–28, 31,

32, 33, 34
openSkiesStateVectorSet, 4, 11, 20, 24–28,

30, 33, 33, 35–37

plotPlanes, 35
plotRoute, 36
plotRoutes, 37

R6Class, 2, 27, 29–33

scale, 26

39

	ADSBDecoder
	clusterRoutes
	findFlightPhases
	getAircraftFlights
	getAircraftMetadata
	getAircraftStateVectorsSeries
	getAirportArrivals
	getAirportDepartures
	getAirportMetadata
	getIntervalFlights
	getIntervalStateVectors
	getOSNCoverage
	getRouteMetadata
	getSingleTimeStateVectors
	getVectorSetFeatures
	getVectorSetListFeatures
	openSkiesAircraft
	openSkiesAirport
	openSkiesFlight
	openSkiesRoute
	openSkiesStateVector
	openSkiesStateVectorSet
	plotPlanes
	plotRoute
	plotRoutes
	Index

