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calculateRazel Calculates azimuth, elevation and range of a given object

Description

The horizontal coordinate system, also called azimuth-elevation system, uses the local horizon of
an observer as its fundamental plane. In it, a given point is defined by 2 main angles: azimuth and
elevation. Azimuth defines the angle of the point around the horizon in the X-Y plane, measured
from the true North and usually increasing towards the East. Elevation is the angle between the
object and the X-Y plane. Finally, the range defines the distance between the observer and the
point.

This function calculates the azimuth, elevation and range given the coordinates of an observed
satellite and of an observer. Both sets of coordinates must be provided as Cartesian geocentric
coordinates in ITRF.

Usage

calculateRazel(geocentricObserver, geocentricSatellite, degreesOutput=TRUE)

Arguments

geocentricObserver

Vector with the X, Y and Z components of the position of the observer in ITRF
frame.

geocentricSatellite

Vector with the X, Y and Z components of the position of the satellite in ITRF
frame.

degreesOutput Logical indicating if the output should be in sexagesimal degrees. If degreesOutput=FALSE,
the output will be in radians.

Value

A vector with three elements, corresponding to the azimuth and elevation in degrees (or radians if
specified) and the range in the same unit as the provided Cartesian coordinates.

References

https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates
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Examples

# The following were the coordinates of Italsat-2 in ITRF the 27th of June, 2006
# at 00:58:29.34 UTC, in meters.

italsat_ITRF <- c(-37325542.8, 19152438.3, 138384.5)

# Let us calculate its azimuth, elevation and range for an observer from Tokyo.
# The latitude and longitude of the city are 35.6762 degrees North, 139.6503
# degrees East. Let's assume an observer placed at sea level (0 m)
# We first convert these coordinates to ITRF:

observer_ITRF <- LATLONtoITRF(c(35.6762, 139.6503, 0), degreesInput=TRUE)

# We can now calculate the azimuth and elevation:

razel <- calculateRazel(observer_ITRF, italsat_ITRF, degreesOutput=TRUE)
razel[1] # Azimuth
razel[2] # Elevation

dateTimeToMJD Calculate Modified Julian Date for a given date and time

Description

The Julian Date (JD) of a given date and time is the number of days since noon of Monday 1st of
January 4713 BC, including a fractional part. Modified Julian Date (MJD) are instead the number
of days since 00:00 of November 17th, 1858. The difference JD and MJD for a given instant is
always 2400000.5, which is the JD of the reference time for MJD.

This function calculates the MJD of a date and time, provided as a date-time character string in
UTC time. The output refers by default to the MJD in UTC, but different time systems can be
chosen: UTC (Coordinated Universal Time), UT1 (Universal Time), TT (Terrestrial Time) and
TDB (Barycentric Dynamical Time).

Usage

dateTimeToMJD(dateTime, timeSystem="UTC")

Arguments

dateTime Date-time string with the date and time in UTC corresponding to the provided
geodetic coordinates.

timeSystem Time system into which the MJD should be calculated. Should be one from
"UTC" (Coordinated Universal Time; default), "UT1" (Universal Time), "TT"
(Terrestrial Time) and "TDB" (Barycentric Dynamical Time).

Value

The MJD for the specified date and time in the chosen time system.



deg2rad 5

References

https://gssc.esa.int/navipedia/index.php/Julian_Date https://gssc.esa.int/navipedia/index.php/Transformations_between_Time_Systems

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# Let's calculate the MJD of the 12th of June, 2000 at 10:00:00 UTC time, in UTC

MJD_UTC <- dateTimeToMJD("2000-06-12 10:00:00", timeSystem = "UTC")

# Let's now calculate the MJD for the same instant in TDB:

MJD_TDB <- dateTimeToMJD("2000-06-12 10:00:00", timeSystem = "TDB")

# We can now calculate the difference in seconds, which matches the difference
# between UTC and TDB for that day:

(MJD_UTC - MJD_TDB) * 86400
}

deg2rad Converts an angle in degrees to radians

Description

This function converts an angle in degrees to radians.

Usage

deg2rad(degrees)

Arguments

degrees Value of the angle in degrees.

Value

The corresponding value of the angle in radians.

Examples

deg2rad(180)



6 ECItoKOE

ECItoKOE Calculate ECI coordinates from Keplerian orbital elements

Description

Keplerian orbital elements are a set of six parameters used to described the orbits of celestial objects,
including satellites. While satellites do not follow a perfectly Keplerian orbit, their state at any
point can be defined by the orbital parameters that they would have if they were located at the same
position with the same velocity following a perfectly Keplerian orbit (i.e., if perturbations were
absent). These are called osculating orbital elements.

Keplerian orbital elements can be unequivocally determined from a satellite if its position and ve-
locity are known. This function calculates orbital elements from the position and velocity of a
satellite in an ECI (Earth-centered inertial) frame of reference. The elements (such as the equatorial
plane) with respect to which the resulting orbital elements will be defined are the same as those
used for the ECI frame of reference. The function calculates the six standard orbital elements, plus
some alternative elements useful for the characterization of special orbits, such as circular ones or
orbits with no inclination.

Usage

ECItoKOE(position_ECI, velocity_ECI)

Arguments

position_ECI Vector with the X, Y and Z components of the position of an object in an ECI
frame, in m.

velocity_ECI Vector with the X, Y and Z components of the velocity of an object in an ECI
frame, in m/s.

Value

A list with the following standard and alternative orbital elements:

semiMajorAxis Semi-major axis of orbital ellipse in meters.
eccentricity Numerical eccentricity of the orbit. Eccentricity measures how much the orbit

deviates from being circular.
inclination Inclination of the orbital plane in radians. Inclination is the angle between the

orbital plane and the equator.
meanAnomaly Mean anomaly of the orbit in radians. Mean anomaly indicates where the satel-

lite is along its orbital path, and is defined as the angle between the direction
of the perigee and the hypothetical point where the object would be if it was
moving in a circular orbit with the same period as its true orbit after the same
amount of time since it last crossed the perigee had ellapsed.

argumentPerigee

Argument of perigee in radians. This is the angle between the direction of the
ascending node and the direction of the perigee (the point of the orbit at which
the object is closest to the Earth).
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longitudeAscendingNode

Longitude of the ascending node (also called right ascension of the ascending
node) in radians. This is the angle between the direction of the ascending node
(the point where thesatellite crosses the equatorial plane moving north) and the
direction of the First Point of Aries (which indicates the location of the vernal
equinox).

trueAnomaly True anomaly of the orbit in radians. Unlike mean anomaly, true anomaly is the
angle between the direction of the perigee and the actual position of the satellite.

argumentLatitude

Argument of latitude of the orbit in radians. Defined as the angle between the
equator and the position of the satellite. It is useful to define the position of
satellites in circular orbits, where the argument of perigee and true anomaly are
not well defined.

longitudePerigee

Longitude of perigee of the orbit in radians. Defined as the angle between the
vernal equinox and the perigee. It is useful for cases of orbits with 0 inclination,
where the longitude of the ascending node and the argument of perigee are not
well defined.

trueLongitude Longitude of perigee of the orbit in radians. Defined as the angle between the
vernal equinox and the position of the satellite. It is useful for cases of cir-
cular orbits with 0 inclination, where the longitude of the ascending node, the
argument of perigee and true anomaly are not well defined.

References

https://www.gsc-europa.eu/system-service-status/orbital-and-technical-parameters https://celestrak.org/columns/v02n01/
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/media/iii.4.1.4_describing_orbits.pdf

Examples

# The following were the position and velocity of satellite MOLNIYA 1-83
# the 25th of June, 2006 at 00:33:43 UTC in the GCRF frame (in m and m/s).

position_GCRF <- c(-14471729.582, -4677558.558, 9369.461)
velocity_GCRF <- c(-3251.691, -3276.008, 4009.228)

# Let's calculate the orbital elements of the satellite at that time

orbital_elements <- ECItoKOE(position_GCRF, velocity_GCRF)

evaluateSPKSegment Evaluate a given SPK segment
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Description

SPK (Spacecraft and Planet Kernel) is a binary file format developed by NAIF to store ephemerides
(trajectory) of celestial bodies and spacecraft in the Solar System. A detailed description of the SPK
file format can be found in NAIF’s documentation (https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html).

Each SPK file contains several segments, with each segment comprising a summary (or descriptor),
a name and an array of double precision elements. Each segment is conceptually equivalent to an
array in the context of generic DAF files. There are several types of SPK segments defined by NAIF,
each identified by an SPK type code currently ranging from 1 to 21 (some intermediate values
are not used or not available for general public use). Each segment type provides ephemerides
information in a different way. Note that the segments stored in a single SPK file can be of different
types. A detailed description of the organization of the arrays for each SPK type can be found at
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html

SPK files can be read with readBinSPK. This function allows the evaluation of one segment of an
SPK file to any target times. The evaluated segment should be one of the elements in the list of
segments returned by calling readBinSPK on an SPK file.

Evaluation at target times of the SPK segment produces state vectors comprising X, Y and Z com-
ponents for position and velocity for the target body. The target body, center body and frame of
reference are those indicated in the corresponding summary of the SPK segment.

The specific algorithm through which an SPK segment is evaluated depends on the type of SPK
segment. For a detailed description, see the documentation of readBinSPK or NAIF’s documenta-
tion.

The output values for all types of segments have been verified to match those of CSPICE to a
precision of sqrt(.Machine$double.eps).

Note that, in addition to position and velocity components, evaluateSPK will also produce X, Y and
Z components of acceleration for segments of types 1, 2, 3, 8, 9, 12, 13, 14, 18, 19, 20 and 21. This
is possible because all of these segments provide some sort of interpolation polynomial coefficients,
which can be differentiated to obtain acceleration values. However, note that said coefficients are,
in principle, not intended to be used to calculate acceleration values, and SPICE does not return
these. Therefore, proceed with caution if using acceleration values obtained in this way. In the
specific case of SPK segments of types 1 and 21, the provided coefficents are for an interpolation
polynomial for acceleration, and therefore are probably the most reliable. In particular, for target
times exactly matching the reference epoch of any of the data points included in the segment, the
acceleration value should match the original value used to fit the interpolation polynomial.

Usage

evaluateSPKSegment(segment, targetEpochs)

Arguments

segment Single SPK segment to be evaluated. The segment should have the same struc-
ture as that of segments returned by the readBinSPK function. Note said func-
tion returns all segments contained in the read SPK file; only one of those should
be selected and provided here.

targetEpochs Numeric vector indicating the target epochs at which the segment should be eval-
uated. The epochs should be provided in TDB seconds since J2000, also known
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as ephemeris time in SPICE. Note that all target epochs should be larger than
the start epoch of the segment, and smaller than the end epoch of the segment,
both of which are specified in the corresponding segment summary. Segments
of type 1 and 21 are an exception. There are segments of these types where the
final record covers epochs up to a time larger than the global end epoch of the
corresponding segment; in cases where epochs larger than the global end epoch
of the segment, but smaller than the end epoch of the last data record, these
epochs will also be evaluated.

Value

A matrix with 7 (for SPK segments of types 5, 10 and 15) or 10 (for all other types) columns.
Each row in the matrix represents a target time of evaluation. Column 1 provides the epochs of
evaluation. Columns 2-4 provide position components. Columns 5-7 provide velocity components.
Column 8-10, when present, provide acceleration components.

References

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html Shampine, L. F. and Gordon, M.
K., Computer Solution of Ordinary Differential Equations: The Initial Value Problem, 1975 Robert
Werner, SPICE spke01 math, 2022. https://doi.org/10.5270/esa-tyidsbu

Examples

# The file vgr2_jup230.bsp provided with the package includes information for the
# Jupiter flyby of Voyager 2

testSPK <- readBinSPK(paste0(path.package("asteRisk"), "/vgr2_jup230.bsp"))
length(testSPK$segments)

# It contains a single segment.

testSegment <- testSPK$segments[[1]]

# Check the initial and end epochs of the interval covered by the segment

testSegment$segmentSummary$initialEpoch
testSegment$segmentSummary$finalEpoch

# Evaluate at target epochs

evaluateSPKSegment(testSegment, c(-649364400, -649364374.68, -647364600, -645364800))

GCRFtoITRF Convert coordinates from GCRF to ITRF
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Description

The GCRF (Geocentric Celestial Reference Frame) frame of reference is an Earth-centered inertial
coordinate frame, where the origin is placed at the center of mass of Earth and the coordinate frame
is fixed with respect to the stars (and therefore not fixed with respect to the Earth surface in its
rotation). The X-axis is aligned with the mean equinox of Earth at 12:00 Terrestrial Time on the 1st
of January, 2000, and the Z-axis is aligned with the Earth´s rotation axis.

It is almost equivalent to the J2000 frame of reference (also called EME2000), and in some contexts
it is also referred to as ICRF frame (although in its strict definition, the origin of coordinates is
placed at the barycenter of the Solar System).

In the ITRF (International Terrestrial Reference Frame), the origin is also placed at the center of
mass of Earth, but the frame rotates with respect to the stars to remain fixed with respect to the Earth
surface as it rotates. The Z-axis extends along the true North as defined by the IERS reference pole,
and the X-axis extends towards the intersection between the equator and the Greenwich meridian at
any time.

The coordinates and velocities input and calculated with the high-precision orbital propagator
(hpop) are in the GCRF frame of reference.

This function requires the asteRiskData package, which can be installed by running install.packages('asteRiskData',
repos='https://rafael-ayala.github.io/drat/')

Usage

GCRFtoITRF(position_GCRF, velocity_GCRF, dateTime)

Arguments

position_GCRF Vector with the X, Y and Z components of the position of an object in GCRF
frame, in m.

velocity_GCRF Vector with the X, Y and Z components of the velocity of an object in GCRF
frame, in m/s.

dateTime Date-time string with the date and time in UTC corresponding to the provided
position and velocity vectors. This specifies the time for which the conversion
from GCRF to ITRF coordinates will be performed. It is important to provide an
accurate value, since the point over the surface of Earth to which a set of GCRF
coordinates refers varies with time due to the motion of Earth.

Value

A list with two elements representing the position and velocity of the satellite in the ITRF (Inter-
national Terrestrial Reference Frame) frame of reference. Position values are in m, and velocity
values are in m/s. Each of the two elements contains three values, corresponding to the X, Y and Z
components of position and velocity in this order.

References

https://celestrak.org/columns/v02n01/
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Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following were the position and velocity of satellite MOLNIYA 1-83
# the 25th of June, 2006 at 00:33:43 UTC in the GCRF frame (in m and m/s).

position_GCRF <- c(-14471729.582, -4677558.558, 9369.461)
velocity_GCRF <- c(-3251.691, -3276.008, 4009.228)

# Let´s convert them into the ITRF frame

coordinates_ITRF <- GCRFtoITRF(position_GCRF, velocity_GCRF, "2006-06-27 00:58:29.34")
}

GCRFtoLATLON Convert coordinates from GCRF to geodetic latitude, longitude and
altitude

Description

The GCRF (Geocentric Celestial Reference Frame) frame of reference is an Earth-centered inertial
coordinate frame, where the origin is placed at the center of mass of Earth and the coordinate frame
is fixed with respect to the stars (and therefore not fixed with respect to the Earth surface in its
rotation). The X-axis is aligned with the mean equinox of Earth at 12:00 Terrestrial Time on the 1st
of January, 2000, and the Z-axis is aligned with the Earth´s rotation axis. This function converts
position in GCRF to geodetic latitude, longitude and altitude, which can be considered to be a
non-inertial, Earth-centered frame of reference.

This function requires the asteRiskData package, which can be installed by running install.packages('asteRiskData',
repos='https://rafael-ayala.github.io/drat/')

Usage

GCRFtoLATLON(position_GCRF, dateTime, degreesOutput=TRUE)

Arguments

position_GCRF Vector with the X, Y and Z components of the position of an object in TEME
frame, in m.

dateTime Date-time string with the date and time in UTC corresponding to the provided
position vector. This specifies the time for which the conversion from GCRF
to geodetic coordinates will be performed. It is important to provide an accu-
rate value, since the point over the surface of Earth to which a set of GCRF
coordinates refers varies with time due to the motion of Earth.

degreesOutput Logical indicating if the output should be in sexagesimal degrees. If degreesOutput=FALSE,
the output will be in radians.
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Value

A vector with three elements, corresponding to the latitude and longitude in degrees (or radians if
specified) and the altitude in m.

References

https://arc.aiaa.org/doi/10.2514/6.2006-6753

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.

n0 <- 1.007781*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 1e-04 # drag coefficient
epochDateTime <- "2006-06-26 00:58:29.34"

# Let´s calculate the position and velocity of the satellite 1 day later

state_1day_TEME <- sgdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=1440)

# We can now convert the results in TEME frame to GCRF frame, previously
# multiplying by 1000 to convert the km output of sgdp4 to m

state_1day_GCRF <- TEMEtoGCRF(state_1day_TEME$position*1000,
state_1day_TEME$velocity*1000,
"2006-06-27 00:58:29.34")

# Finally, we convert the results in GCRF frame to geodetic latitude, longitude
# and altitude

state_1day_geodetic <- GCRFtoLATLON(state_1day_GCRF$position, "2006-06-27 00:58:29.34")
}

getLatestSpaceData Retrieves the latest space data

Description

The asteRiskData package provides the data and coefficients required for calculation of forces
for hpop and other functions such certain conversions between reference frames. Some of the
data tables included in the package are updated periodically with new data. These include Earth
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orientation parameters, space weather data and solar and geomagnetic storms. In order to perform
the calculations dependent on such data for the most recent times, the latest available data must be
retrieved.

This function automatically updates the data tables, enabling such calculations for the most recent
times.

Usage

getLatestSpaceData(targets="all")

Arguments

targets Character vector specifying the data that should be updated. It should be a vector
containing one or more of the following strings: "all" (to update all data), "EOP"
(Earth orientation parameters), "SW" (space weather), "SS" (solar storms) or
"GS" (geomagnetic storms). By default, all data are updated.

Value

This function is invoked for its side effect, which is updating the data tables used internally for
calculations requiring asteRiskData package, such as those performed by hpop.

References

http://www.celestrak.org/SpaceData/EOP-All.txt https://celestrak.org/SpaceData/SW-All.txt https://sol.spacenvironment.net/jb2008/indices.html

Examples

if(interactive()) {
if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The table of Earth orientation parameters distributed with asteRiskData
# comprises data up to the 21st of March, 2021

asteRiskData::earthPositions[nrow(asteRiskData::earthPositions),]

# The table can be easily updated to include the most recent available data

getLatestSpaceData(targets="all")
asteRiskData::earthPositions[nrow(asteRiskData::earthPositions),]
}
}
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hpop High-precision numerical orbital propagator

Description

Given the position and velocity of a satellite at a given time (in the ICRF system of coordinates
centered on the Solar System Barycenter, any of the main planets, Earth’s Moon or Pluto), propa-
gates its position by calculating its acceleration (based on a force model) and solving the resulting
second-order ODE through numerical integration. This allows propagation of orbits with consider-
ably higher accuracy than other propagators such as SGP4 and SDP4, but at the expense of a much
higher computational cost. The forces and effects currently considered are gravitational attraction
by the Earth (using the GGM05C gravity model, with spherical harmonics up to degree and or-
der of 360); effects of Earth ocean and solid tides; gravitational attraction by the Moon (using the
GRGM1200B gravity model with spherical harmonics up to degree and order of 1200), effects of
solid Moon tides (currently using an ellastic Moon model), Sun and planets (considered as point
masses); solar radiation pressure; atmospheric drag, and relativistic effects. The force field is based
on the forces described in Satellite Orbits: Models, Methods and Applications (Oliver Montenbruck
and Eberhard Gill) and Fundamentals of Astrodynamics and Applications (David Vallado). The
NRLMSISE-00 model is used to calculate atmospheric density for the calculation of atmospheric
drag. The FES2014 model is used to calculate Earth geopotential model corrections due to ocean
tides. As mentioned before, the central body for the frame of reference can be any of the Solar
System Barycenter (SSB), any of the main planets, Earth’s Moon or Pluto. By default, it is as-
sumed to be Earth, corresponding to GCRF (Geocentric ICRF). The initial position will be checked
against the position of said celestial bodies, to identify if it falls under the Laplacian gravitational
sphere of influence of any of them. If this is the case, and it differs from the specified central
body, the coordinate system will be changed to be centered on the celestial body whose sphere of
influence includes the object of interest. This avoids instability in propagation. The high-precision
numerical orbital propagator requires the asteRiskData package, which provides the data and co-
efficients required for calculation of the modeled forces. asteRiskData can be installed by running
install.packages('asteRiskData', repos='https://rafael-ayala.github.io/drat/')

Usage

hpop(position, velocity, dateTime, times, satelliteMass, dragArea,
radiationArea, dragCoefficient, radiationCoefficient,
earthSphericalHarmonicsDegree=130, solidEarthTides=TRUE,
oceanTides=TRUE, moonSphericalHarmonicsDegree=150, solidMoonTides=TRUE,
centralBody="Earth", autoCentralBodyChange=TRUE, ...)

Arguments

position Initial position of the satellite in the GCRF system of coordinates. Should be
provided as a numeric vector with 3 components that indicate the X, Y and Z
components of the position in meters.

velocity Initial velocity of the satellite in the GCRF system of coordinates. Should be
provided as a numeric vector with 3 components that indicate the X, Y and Z
components of the position in meters/second.
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dateTime Date time string in the YYYY-MM-DD HH:MM:SS format indicating the time
corresponding to the initial position and velocity, in UTC time.

times Vector with the times at which the position and velocity of the satellite should
be calculated, in seconds since the initial time.

satelliteMass Mass of the satellite in kilograms.

dragArea Effective area of the satellite for atmospheric drag in squared meters. If the
way that a satellite will orient with respect to its velocity is not known, a mean
cross-sectional area should be calculated assuming that the orientation of the
satellite with respect to its velocity will vary uniformly. A decent estimate
can be obtained with a flat-plate model, where the satellite is considered to be
parallelepiped-shaped. The mean effective area can then be calculated as CSA
= (S1 + S2 + S3 (+S4))/2, where S1, S2 and S3 are the areas of the three per-
pendicular surfaces of the model and S4 is an optional term to account for the
area of solar panels (potential masking between the solar panels and the main
surfaces is not considered; this might be partially accounted for by introducing
a factor to reduce the calculated effective area).

radiationArea Effective area of the satellite subject to the effect of radiation pressure in squared
meters.

dragCoefficient

Drag coefficient (Cd) used for the calculation of atmospheric drag. For low
Earth-orbiting satellites, a value of 2.2 is frequently employed if a better ap-
proximation is not available.

radiationCoefficient

Coefficient for the force resulting from radiation pressure. This parameter is
usually referred to as reflectivity coefficient (Cr) and the value varies for differ-
ent satellites and orbits. If unknown, a value of 1.2 is usually a decent approxi-
mation.

earthSphericalHarmonicsDegree

Maximum degree and order that should be considered when calculating the
Earth geopotential model. The model will be complete up to the specified de-
gree/order, i.e., all zonal, sectorial and tesseral spherical harmonics will be cal-
culated. The maximum possible value is 360, since that is the highest degree
and order of the Stokes’ coefficients provided in the GGM05C model. Note
that spherical harmonics for Earth gravity field will only be used if Earth is the
central body for propagation; otherwise, only a point-mass attraction will be
calculated.

solidEarthTides

Logical indicating if corrections of the Cnm and Snm Stokes’ coefficients for
the geopotential model due to solid Earth tides should be performed, following
IERS 2010 procedures and considering anelasticity of the Earth.

oceanTides Logical indicating if corrections of the Cnm and Snm Stokes’ coefficients for the
geopotential model due to ocean tides should be performed, using the FES2014
oceanic tides model.

moonSphericalHarmonicsDegree

Maximum degree and order that should be considered when calculating the
Moon gravity model. The model will be complete up to the specified degree/order,
i.e., all zonal, sectorial and tesseral spherical harmonics will be calculated. The
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maximum possible value is 1200, since that is the highest degree and order of
the Stokes’ coefficients provided in the GRGM1200B model. Note that spher-
ical harmonics for Moon gravity field will only be used if Moon is the central
body for propagation; otherwise, only a point-mass attraction will be calculated.

solidMoonTides Logical indicating if corrections of the Cnm and Snm Stokes’ coefficients for the
lunar gravity model due to solid Moon tides should be performed, following the
procedure described by William and Boggs, 2015 using an elastic Moon model.
Corrections are applied to the C20, C21, C22, S21 and S22 coefficients.

centralBody Character string indicating the celestial body on which the supplied initial po-
sition (in ICRF) are centered. Should be one of "SSB" (meaning Solar System
Barycenter), "Mercury", "Venus", "Earth", "Moon", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune" or "Pluto". The initial position will be checked against the
position of said celestial bodies, to identify if it falls under the Laplacian gravi-
tational sphere of influence of any of them. If this is the case, and it differs from
the specified central body, the coordinate system will be changed to be centered
on the celestial body whose sphere of influence includes the object of interest.

autoCentralBodyChange

Logical indicating if the celestial object used as the center of coordinates should
be automatically updated during propagation based on the radii of the spheres of
influence of the main planets, the Moon and Pluto. By default, autoCentralBodyChange=TRUE.

... Additional parameters to be passed to ode to control how numerical integration
is performed. By default, the RADAU5 solver is used.

Value

A data frame with the results of the numerical integration at the requested times. Each row contains
the results for one of the requested times. The data frame contains 11 columns: time (indicating the
time for the corresponding row in seconds since the initial time), positionX, positionY, positionZ
(indicating the X, Y and Z components of the position for that time in meters), velocityX, velocityY
and velocityZ (indicating the X, Y and Z components of the velocity for that time in meters/second),
accelerationX, accelerationY, accelerationZ (indicating the X, Y and Z components of the acceler-
ation for that time in meters/second^2) and centralBody, indicating the central body of the frame
of reference for the results for the corresponding time. Positions and velocities are returned in
the ICRF frame of reference, centered in the celestial body specified in column centralBody. If
autoCentralBodyChange=TRUE, the celestial body whose sphere of influence includes the object
of interest will be automatically used as the central body. Additionally, if transitions in or out of the
spheres of influence of the main celestial bodies are detected during propagation of the trajectory,
the central body will be automatically modified accordingly. If autoCentralBodyChange=FALSE,
such automatic changes of the central body will not be performed, and instead the user-specified
central body will be used at all times. Note, however, that it is not recommended to perform prop-
agation in a frame center at an object different than the celestial body whose sphere of influence
includes the target of propagation, since this can lead to a substantial loss of accuracy. For details,
see M. Vautier, 2008. Note that, if none of the spheres of influence of the planets, Moon or Pluto
included the object of interest, the center of the ICRF frame will be placed at the Solar System
Barycenter.

https://etd.auburn.edu/bitstream/handle/10415/1133/Vautier_Mana_34.pdf
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References

Satellite Orbits: Models, Methods and Applications. Oliver Montenbruck and Eberhard Gill. Fun-
damentals of Astrodynamics and Applications. David Vallado. https://www.mathworks.com/matlabcentral/fileexchange/55167-
high-precision-orbit-propagator https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1144&context=smallsat
https://iopscience.iop.org/article/10.1088/1742-6596/911/1/012009/pdf https://www.sciencedirect.com/science/article/pii/S1110016821000016
https://etd.auburn.edu/bitstream/handle/10415/1133/Vautier_Mana_34.pdf?sequence=1 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014JE004755

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following are the position and velocity in the GCRF frame of satellite
# MOLNIYA 1-83 the 25th of June, 2006 at 00:33:43 UTC.

initialPosition <-c(-14568679.5026116, -4366250.78287623, 9417.9289105405)
initialVelocity <- c(-3321.17428902497, -3205.49400830455, 4009.26862308806)
initialTime <- "2006-06-25 00:33:43"

# Molniya satellites have a mass of approximately 1600 kg and a cross-section of
# 15 m2. Additionally, let´s use 2.2 and 1.2 as approximately values of the
# drag and reflectivity coefficients, respectively.

molniyaMass <- 1600
molniyaCrossSection <- 15
molniyaCr <- 1.2
molniyaCd <- 2.2

# Let´s calculate the position and velocity of the satellite for each minute of
# the following 10 minutes.

targetTimes <- seq(0, 600, by=60)
hpop_results <- hpop(initialPosition, initialVelocity, initialTime, targetTimes,

molniyaMass, molniyaCrossSection, molniyaCrossSection,
molniyaCr, molniyaCd)

}

ITRFtoGCRF Convert coordinates from ITRF to GCRF

Description

The ITRF (International Terrestrial Reference Frame) is an ECEF (Earth Centered, Earth Fixed)
frame of reference, i.e., a non-inertial frame of reference where the origin is placed at the center of
mass of Earth, and the frame rotates with respect to the stars to remain fixed with respect to the Earth
surface as it rotates. The Z-axis extends along the true North as defined by the IERS reference pole,
and the X-axis extends towards the intersection between the equator and the Greenwich meridian at
any time.

The GCRF (Geocentric Celestial Reference Frame) frame of reference is an Earth-centered inertial
coordinate frame, where the origin is also placed at the center of mass of Earth and the coordinate
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frame is fixed with respect to the stars (and therefore not fixed with respect to the Earth surface in
its rotation). The X-axis is aligned with the mean equinox of Earth at 12:00 Terrestrial Time on the
1st of January, 2000, and the Z-axis is aligned with the Earth´s rotation axis.

This function requires the asteRiskData package, which can be installed by running install.packages('asteRiskData',
repos='https://rafael-ayala.github.io/drat/')

Usage

ITRFtoGCRF(position_ITRF, velocity_ITRF, dateTime)

Arguments

position_ITRF Vector with the X, Y and Z components of the position of an object in ITRF
frame, in m.

velocity_ITRF Vector with the X, Y and Z components of the velocity of an object in ITRF
frame, in m/s.

dateTime Date-time string with the date and time in UTC corresponding to the provided
position and velocity vectors. This specifies the time for which the conversion
from ITRF to GCRF coordinates will be performed. It is important to provide an
accurate value, since the point over the surface of Earth to which a set of GCRF
coordinates refers varies with time due to the motion of Earth.

Value

A list with two elements representing the position and velocity of the satellite in the GCRF (Earth-
centered non-intertial) frame of reference. Position values are in m, and velocity values are in m/s.
Each of the two elements contains three values, corresponding to the X, Y and Z components of
position and velocity in this order.

References

https://celestrak.org/columns/v02n01/

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following were the position and velocity of satellite MOLNIYA 1-83
# the 25th of June, 2006 at 00:33:43 UTC in the ECEF frame (in m and m/s).

position_ITRF <- c(1.734019e+06, -1.510972e+07, 39.08228)
velocity_ITRF <- c(1468.832, -3962.464, 4007.039)

# Let´s convert them into the GCRF frame

coordinates_GCRF <- ITRFtoGCRF(position_ITRF, velocity_ITRF, "2006-06-25 00:33:43")
}
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ITRFtoLATLON Convert coordinates from ITRF to geodetic latitude, longitude and al-
titude

Description

The ITRF (International Terrestrial Reference Frame) is an ECEF (Earth Centered, Earth Fixed)
frame of reference, i.e., a non-inertial frame of reference where the origin is placed at the center of
mass of Earth, and the frame rotates with respect to the stars to remain fixed with respect to the Earth
surface as it rotates. The Z-axis extends along the true North as defined by the IERS reference pole,
and the X-axis extends towards the intersection between the equator and the Greenwich meridian
at any time. This function converts Cartesian coordinates in the ECEF frame to geodetic latitude,
longitude and altitude.

Usage

ITRFtoLATLON(position_ITRF, degreesOutput=TRUE)

Arguments

position_ITRF Vector with the X, Y and Z components of the position of an object in ITRF
frame, in m.

degreesOutput Logical indicating if the output should be in sexagesimal degrees. If degreesOutput=FALSE,
the output will be in radians.

Value

A vector with three elements, corresponding to the latitude and longitude in degrees (or radians if
specified) and the altitude in m.

References

https://arc.aiaa.org/doi/10.2514/6.2006-6753

Examples

coordinates_ITRF <- c(5062040.1, -530657.4, 3863936.5)

# Let's calculate the geodetic latitude, longitude and altitude

geodetic <- ITRFtoLATLON <- (coordinates_ITRF)

# A longer application example follows, useful to represent the groundtrack of a
# satellite after propagaton with SGP4/SDP4

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.
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n0 <- 1.007781*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 1e-04 # drag coefficient
epochDateTime <- "2006-06-26 00:58:29.34"

# Let´s calculate the position and velocity of the satellite 1 day later

state_1day_TEME <- sgdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=1440)

# We can now convert the results in TEME frame to ITRF frame, previously
# multiplying by 1000 to convert the km output of sgdp4 to m

state_1day_ITRF <- TEMEtoITRF(state_1day_TEME$position, state_1day_TEME$velocity,
"2006-06-27 00:58:29.34")

# Finally, we can convert the ECEF coordinates to geodetic latitude, longitude
# and altitude

state_1day_geodetic <- ITRFtoLATLON(state_1day_ITRF$position)
}

JPLephemerides Calculate JPL main celestial objects ephemerides for a given Modified
Julian Date

Description

NASA’s Jet Propulsion Laboratory (JPL) provides mathematical models of the Solar System known
as Development Ephemerides (DE). The models are given as sets of Chebyshev coefficients, which
cam be used to calculate the position (and its derivatives) of the Sun, the eight major planets, Pluto
and the Moon. This function employes JPL DE440 to calculate the position (and optionally veloc-
ities also) of the mentioned celestial objects, in ICRF frame. JPL DE440 covers the period from
1550 to 2650 AC. In addition to the position of celestial objects, lunar libration angles are also cal-
culated. Internally, calculations are performed by employing Clenshaw’s algorithm together with
the Chebyshev coefficients provided by JPL DE440. The target time should be specified as a Mod-
ified Julian Date (MJD). MJD in different time systems can be used. Currently, UTC, UT1, TT
and TDB are supported. Additionally, a central body with respect to which positions and veloci-
ties are calculated should be specified. By default, the Solar System Barycenter (SSB) is used, but
additionally Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune or Pluto can be
selected. Note that this function requires the additional package asteRiskData, which provides the
Chebyshev coefficients, and can be installed by running install.packages("asteRiskData",
repos="https://rafael-ayala.github.io/drat/")



JPLephemerides 21

Usage

JPLephemerides(MJD, timeSystem="UTC", centralBody="SSB", derivatives="acceleration")

Arguments

MJD Modified Julian Date of the time for which celestial object ephemerides should
be calculated. MJD are fractional number of days since midnight of the 17th of
November, 1858. The MJD of a date-time string can be obtained with function
dateTimeToMJD.

timeSystem Time system into which the MJD is provided. Should be one from "UTC" (Co-
ordinated Universal Time; default), "UT1" (Universal Time), "TT" (Terrestrial
Time) and "TDB" (Barycentric Dynamical Time).

centralBody String indicating the celestial object that will be taken as the center of coordi-
nates to which positions and velocities are referred. Must be one of "SSB" (Solar
System Barycenter), "Mercury", "Venus", "Earth", "Moon", "Mars", "Jupiter",
"Saturn", "Uranus", "Neptune" or "Pluto".

derivatives String indicating what derivatives of positions should be calculated. Must be one
of "none", "velocity" or "acceleration". If "none", only position is calculated. If
"velocity", velocities are calculated, as well as first order derivatives of Moon
libration angles. If "acceleration", both velocities and accelerations (as well as
second order derivatives of Moon libration angles) are calculated.

Value

A list of vectors providing the positions (in meters), velocities (in m/s; only if requested), acceler-
ations (in m/s^2; only if requested), Moon libration angles (in radians), first derivatives of Moon
libration angles (in radians/s; only if velocities were requested) and second derivatives of Moon li-
bration angles (in radians/s^2; only if accelerations were requested) of celestial objects with respect
to the specified central body. For position, velocity and acceleration vectors, X, Y and Z compo-
nents are given in this order. For Moon libration angles and their derivatives, they are given in the
following order: phi, theta and psi.

References

https://gssc.esa.int/navipedia/index.php/Julian_Date https://gssc.esa.int/navipedia/index.php/Transformations_between_Time_Systems

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# Let's calculate the MJD of the 12th of June, 2000 at 10:00:00 UTC time, in UTC

MJD_UTC <- dateTimeToMJD("2000-06-12 10:00:00", timeSystem = "UTC")

# Let's now calculate the JPL ephemerides using Earth as the central body:

ephemerides <- JPLephemerides(MJD_UTC, timeSystem = "UTC", centralBody="Earth")

# We can now calculate, for example, the exact distance between the barycenters
# of Earth and Moon
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sqrt(sum(ephemerides$positionMoon^2))
}

KOEtoECI Calculate ECI coordinates from Keplerian orbital elements

Description

Keplerian orbital elements are a set of six parameters used to described the orbits of celestial objects,
including satellites. While satellites do not follow a perfectly Keplerian orbit, their state at any
point can be defined by the orbital parameters that they would have if they were located at the same
position with the same velocity following a perfectly Keplerian orbit (i.e., if perturbations were
absent). These are called osculating orbital elements.

A complete set of six Keplerian elements defines unequivocally the position and velocity of the
satellite in a given frame of reference, and therefore can be used to calculate its cartesian coor-
dinates. This function calculates the coordinates of a satellite in an ECI (Earth-centered inertial)
frame of reference from a set of Keplerian orbital elements. The exact ECI frame of the resulting
coordinates is the same used to define the supplied orbital elements.

Usage

KOEtoECI(a, e, i, M, omega, OMEGA, keplerAccuracy=10e-8, maxKeplerIterations=100)

Arguments

a Semi-major axis of orbital ellipse in meters.

e Numerical eccentricity of the orbit. Eccentricity measures how much the orbit
deviates from being circular.

i Inclination of the orbital plane in radians. Inclination is the angle between the
orbital plane and the equator.

M Mean anomaly of the orbit in radians. Mean anomaly indicates where the satel-
lite is along its orbital path, and is defined as the angle between the direction
of the perigee and the hypothetical point where the object would be if it was
moving in a circular orbit with the same period as its true orbit after the same
amount of time since it last crossed the perigee had ellapsed.

omega Argument of perigee in radians. This is the angle between the direction of the
ascending node and the direction of the perigee (the point of the orbit at which
the object is closest to the Earth).

OMEGA Right ascension of the ascending node in radians. This is the angle between the
direction of the ascending node (the point where the satellite crosses the equa-
torial plane moving north) and the direction of the First Point of Aries (which
indicates the location of the vernal equinox).

keplerAccuracy Accuracy to consider Kepler’s equation solved when calculating eccentric anomaly
from mean anomaly. If two consecutive solutions differ by a value lower than
this accuracy, integration is considered to have converged.
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maxKeplerIterations

Maximum number of iterations after which fixed-point integration of Kepler’s
equation will stop, even if convergence according to the accuracy criterion has
not been reached.

Value

A list with two elements representing the position and velocity of the satellite in the same ECI
(Earth Centered, Earth Fixed) frame of reference into which the provided orbital elements were
defined. Position values are in m, and velocity values are in m/s. Each of the two elements contains
three values, corresponding to the X, Y and Z components of position and velocity in this order.

References

https://www.gsc-europa.eu/system-service-status/orbital-and-technical-parameters https://celestrak.org/columns/v02n01/
https://downloads.rene-schwarz.com/download/M001-Keplerian_Orbit_Elements_to_Cartesian_State_Vectors.pdf

Examples

# Let's calculate the ECI coordinates from the orbital elements provided by a
# TLE. It should be noted that this is often not recommended, since the orbital
# elements supplied in a TLE are not osculating orbital elements, but instead
# mean orbital elements set to fit a range of actual observations. The
# recommended procedures are to use TLE only in conjunction with the SGP4/SDP4
# models, and viceversa.
# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.

n0 <- 1.007781*((2*pi)/(86400)) # Multiplication by 2pi/86400 to convert to radians/s
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians

# The semi-major axis can be calculated from the mean motion in radians/s
# as follows: (mu is the standard gravitational parameter of Earth)

mu <- 3.986004418e14 # in units of m3 s-2
a0 <- (mu^(1/3))/(n0^(2/3))

# The ECI coordinates can then be calculated. In this case, they will be in TEME
# frame, since the original orbital elements are derived from a TLE
coordinates_ECI <- KOEtoECI(a0, e0, i0, M0, omega0, OMEGA0)

lambert Solve Lambert’s problem to determine a transfer orbit
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Description

Given 2 position vectors and a time difference between them, calculates the velocity that the object
should have at the initial and final states to follow a transfer orbit in the target time (Lambert’s
problem). The transfer orbit can be elliptical, parabolic or hyperbolic, all of which are dealt with.
In the case of elliptical orbits, multi-revolution orbits are possible. Additionally, low-path and
high-path orbits are also possible. All possible solutions are returned for the case of elliptical
transfers. The user must specify if a retrograde transfer is desired. By default, prograde transfers
are calculated. Currently, the formulation by Dario Izzo is applied to solve Lambert’s problem
(https://link.springer.com/article/10.1007/s10569-014-9587-y).

Usage

lambert(initialPosition, finalPosition, initialTime, finalTime, retrogradeTransfer=FALSE,
centralBody="Earth", maxIterations=2000, atol=0.00001, rtol=0.000001)

Arguments

initialPosition

Vector with the 3 components of the initial position in Cartesian coordinates, in
meters.

finalPosition Vector with the 3 components of the initial position in Cartesian coordinates, in
meters.

initialTime Either date-time string in UTC indicating the time corresponding to the initial
state vector of the satellite, or numeric value indicating the starting time in sec-
onds since an arbitrary reference instant. If provided as a date-time string in
UTC, finalTime can be provided either as another date-time string in UTC (in
which case the transfer time will be determined as the difference between the 2
date-time strings), or as a numeric value indicating the seconds ellapsed since
initialTime. If provided as a numeric value, finalTime can only be provided
as another numeric value indicating the number of seconds since the same ar-
bitrary reference for objects in deep space, and also for objects near Earth if
targetTime is provided as a date-time string.

finalTime Either date-time string in UTC indicating the time corresponding to the final
state vector of the satellite, or numeric value indicating the final time in seconds.
If initialTime was provided as a date-time string in UTC, then finalTime can
be provided as either of the two (date-time string or numeric value in seconds).
In this case, providing finalTime as a numeric value will be interpreted as the
number of seconds since the instant specified for initialTime. If initialTime
was provided as a numeric value (indicating the time in seconds since an arbi-
trary reference point), then finalTime can only be provided as another numeric
value, which will be interpreted as the number of seconds since the same refer-
ence instant as that used for initialTime, and therefore the transfer time will
be calculated as the difference between initialTime and finalTime.

retrogradeTransfer

Logical indicating if retrograde transfer orbits should be calculated, i.e., transfer
orbits with an inclination higher than 180º. By default, retrogradeTransfer=FALSE,
and prograde transfer orbits are calculated.



lambert 25

centralBody String indicating the central body around which the satellite is orbiting. Can be
one of c("Sun", "Mercury", "Venus", "Earth", "Moon", "Mars", "Jupiter",
"Saturn", "Uranus", "Neptune") (case insensitive).

maxIterations Maximum number of iterations to perform at the different root-finding steps
when solving Lambert’s problem.

atol Absolute tolerance value used for the convergence criterion at the different root-
finding steps when solving Lambert’s problem.

rtol Relative tolerance value used for the convergence criterion at the different root-
finding steps when solving Lambert’s problem.

Value

A list with a number of elements equal to the number of possible transfer orbits found. For hyper-
bolic and parabolic transfer orbits, there will always be a single possible transfer orbit. For elliptic
transfer orbits, multi-revolution orbits may exist if the transfer time is large enough. If they are
possible, they will be calculated together with the basic, single-revolution orbit. Each element of
the top-level list is in itself a list with the following elements:

numberRevs Number of complete revolutions that will be performed in this transfer orbit.
Always equals 0 for parabolic and hyperbolic transfer orbits, as well as for the
non-multirevolution orbit of elliptic transfers.

path String indicating if the transfer orbit is of the high-path type (i.e., has its second
focus located beyond the vector connecting the initial and final positions) or of
the low-path type (second focus located between this vector and the first focus).

orbitType String indicating the type of transfer orbit (elliptic, parabolic or hyperbolic).

v1 Velocity vector in m/s that the object should have at the start of the transfer orbit.

v2 Velocity vector in m/s that the object should have at the end of the transfer orbit.

References

https://link.springer.com/article/10.1007/s10569-014-9587-y

Examples

# Consider the following initial and final positions:
initialPosition <- c(15945.34, 0, 0) * 1000
finalPosition <- c(12214.83899, 10249.46731, 0) * 1000
# Given a time difference of 76 minutes between the 2 states, calculate the
# velocity that the spacecraft should have at the beginning and end of the
# transfer orbit
lambertSolution <- lambert(initialPosition, finalPosition, 0, 76*60)
length(lambertSolution)
lambertSolution[[1]]$orbitType
lambertSolution[[1]]$v1
lambertSolution[[1]]$v2

# A single transfer orbit is possible (elliptic, single-revolution orbit)
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LATLONtoGCRF Convert coordinates from geodetic latitude, longitude and altitude to
GCRF

Description

The GCRF (Geocentric Celestial Reference Frame) frame of reference is an Earth-centered inertial
coordinate frame, where the origin is also placed at the center of mass of Earth and the coordinate
frame is fixed with respect to the stars (and therefore not fixed with respect to the Earth surface in
its rotation). The X-axis is aligned with the mean equinox of Earth at 12:00 Terrestrial Time on the
1st of January, 2000, and the Z-axis is aligned with the Earth´s rotation axis. This function converts
geodetic latitude, longitude and altitude to Cartesian coordinates in the GCRF frame. The WGS84
Earth ellipsoid model is used.

Usage

LATLONtoGCRF(position_LATLON, dateTime, degreesInput=TRUE)

Arguments

position_LATLON

Vector with the latitude, longitude and altitude of the object. Latitude and longi-
tude can be provided in sexagesimal degrees or in radians (by default, sexagesi-
mal degrees are asumed). Altitude must be provided in meters.

dateTime Date-time string with the date and time in UTC corresponding to the provided
geodetic coordinates.

degreesInput Logical indicating if the input latitude and longitude are in sexagesimal degrees.
If degreesInput=FALSE, the input will be considered to be in radians. This
specifies the time for which the conversion from geodetic coordinates to GCRF
will be performed. It is important to provide an accurate value, since the point
over the surface of Earth to which a set of GCRF coordinates corresponds varies
with time due to the motion of Earth.

Value

A vector with three elements, corresponding to the X, Y and Z components of position in meters in
the ECEF frame, in this order.

References

https://apps.dtic.mil/sti/pdfs/ADA280358.pdf

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
latitude <- 37.3891
longitude <- -5.9845
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altitude <- 20000

# Let´s calculate the corresponding coordinates in GCRF frame, assuming that
# the provided coordinates were valid the 20th of October, 2020 at 15:00:00 UTC

coordinatesGCRF <- LATLONtoGCRF(c(latitude, longitude, altitude),
dateTime="2020-10-20 15:00:00")

}

LATLONtoITRF Convert coordinates from geodetic latitude, longitude and altitude to
ITRF

Description

The ITRF (International Terrestrial Reference Frame) is an ECEF (Earth Centered, Earth Fixed)
frame of reference, i.e., a non-inertial frame of reference where the origin is placed at the center of
mass of Earth, and the frame rotates with respect to the stars to remain fixed with respect to the Earth
surface as it rotates. The Z-axis extends along the true North as defined by the IERS reference pole,
and the X-axis extends towards the intersection between the equator and the Greenwich meridian at
any time. This function converts geodetic latitude, longitude and altitude to Cartesian coordinates
in the ITRF frame. The WGS84 Earth ellipsoid model is used.

Usage

LATLONtoITRF(position_LATLON, degreesInput=TRUE)

Arguments

position_LATLON

Vector with the latitude, longitude and altitude of the object. Latitude and longi-
tude can be provided in sexagesimal degrees or in radians (by default, sexagesi-
mal degrees are asumed). Altitude must be provided in meters.

degreesInput Logical indicating if the input latitude and longitude are in sexagesimal degrees.
If degreesInput=FALSE, the input will be considered to be in radians.

Value

A vector with three elements, corresponding to the X, Y and Z components of position in meters in
the ITRF frame, in this order.

References

https://apps.dtic.mil/sti/pdfs/ADA280358.pdf
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Examples

latitude <- 37.3891
longitude <- -5.9845
altitude <- 20000

# Let´s calculate the corresponding coordinates in ECEF frame

coordinates_ITRF <- LATLONtoITRF(c(latitude, longitude, altitude))

parseTLElines Parse the lines of a TLE

Description

TLE (Two-/Three- Line Element) is the standard format for representing orbital state vectors. This
function parses a character vector where each element represents a line of the TLE. The supplied
character vector can have either 2 (for Two Line Elements) or 3 (for Three Line Elements) elements.
The two lines of a Two Line Element contain all the information. The additional line in a Three
Line Element is optional, and contains just the satellite name. For a detailed description of the TLE
format, see https://celestrak.org/columns/v04n03/#FAQ01.

Usage

parseTLElines(lines)

Arguments

lines Character vector where each element is a string corresponding to a line of the
TLE. The character vector must have either 2 or 3 elements.

Value

A list with the following elements that define the orbital state vector of the satellite:

NORADcatalogNumber

NORAD Catalog Number, also known as Satellite Catalog Number, assigned by
United States Space Command to each artificial object orbiting Earth

classificationLevel

Classification level of the information for the orbiting object. Can be unclassi-
fied, classified, secret or unknown

internationalDesignator

International Designator, also known as COSPAR ID, of the object. It consists
of the launch year, separated by a hyphen from a three-digit number indicating
the launch number for that year and a set of one to three letters indicating the
piece for a launch with multiple pieces.

launchYear The launch year of the object

launchNumber The launch number of the object during its launch year



parseTLElines 29

launchPiece The piece for the launch of the object, if it was a launch with multiple pieces

dateTime Date time string to which the orbital state vector corresponds

elementNumber Element number for the object. In principle, every time a new TLE is generated
for an object, the element number is incremented, and therefore element num-
bers could be used to assess if all the TLEs for a certain object are available.
However, in practice it is observed that this is not always the case, with some
numbers skipped and some numbers repeated.

inclination Mean orbital inclination of the satellite in degrees. This is the angle between the
orbital plane of the satellite and the equatorial plane

ascension Mean longitude of the ascending node of the satellite at epoch, also known as
right ascension of the ascending node, in degrees. This is the angle between the
direction of the ascending node (the point where the satellite crosses the equa-
torial plane moving north) and the direction of the First Point of Aries (which
indicates the location of the vernal equinox)

eccentricity Mean eccentricity of the orbit of the object. Eccentricity is a measurement of
how much the orbit deviates from a circular shape, with 0 indicating a perfectly
circular orbit and 1 indicating an extreme case of parabolic trajectory

perigeeArgument

Mean argument of the perigee of the object in degrees. This is the angle between
the direction of the ascending node and the direction of the perigee (the point of
the orbit at which the object is closest to the Earth)

meanAnomaly Mean anomaly of the orbit of the object in degrees. This indicates where the
satellite is along its orbital path. It is provided as the angle between the direc-
tion of the perigee and the hypothetical point where the object would be if it
was moving in a circular orbit with the same period as its true orbit after the
same amount of time since it last crossed the perigee had ellapsed. Therefore, 0
denotes that the object is at the perigee

meanMotion Mean motion of the satellite at epoch in revolutions/day
meanMotionDerivative

First time derivative of the mean motion of the satellite in revolutions/day^2^
meanMotionSecondDerivative

Second time derivative of the mean motion of the satellite in revolutions/day^3^.

Bstar Drag coefficient of the satellite in units of (earth radii)^-1^. Bstar is an adjusted
value of the ballistic coefficient of the satellite, and it indicates how susceptible
it is to atmospheric drag.

ephemerisType Source for the ephemeris (orbital state vector). Most commonly, it is distributed
data obtained by combaining multiple observations with the SGP4/SDP4 models

epochRevolutionNumber

Number of full orbital revolutions completed by the object

objectName Name of the object, retrieved from the first line of the TLE if a Three Line
Element was provided

References

https://celestrak.org/columns/v04n03/#FAQ01
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Examples

# The following lines correspond to a TLE for Italsat 2 the 26th of June, 2006
# at 00:58:29.34 UTC.

italsat2_lines <- c("ITALSAT 2",
"1 24208U 96044A 06177.04061740 -.00000094 00000-0 10000-3 0 1600",
"2 24208 3.8536 80.0121 0026640 311.0977 48.3000 1.00778054 36119")

italsat2_TLE <- parseTLElines(italsat2_lines)
italsat2_TLE

rad2deg Converts an angle in radians to degrees

Description

This function converts an angle in radians to degrees.

Usage

rad2deg(radians)

Arguments

radians Value of the angle in radians.

Value

The corresponding value of the angle in degrees.

Examples

rad2deg(pi)

readBinDAF Read a generic binary DAF file
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Description

DAF (Double Precision Array File) is a binary file architecture designed to store arrays of double
precision arrays used by SPICE, NAIF toolkit software library. The architecture forms the basis of
multiple file formats used to store different data related to astrodynamics, such as SPK, PCK and
CK files (https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html).

DAF files provide a generic architecture onto which more specific file formats are implemented.
They are organized in records of fixed length (1024 bytes) containing different information. The
first record is called the file record, and contains global metadata for the file. This is followed by
an optional block comprising any number of comment records. After this, the file consits of sets of
summary records, name records and element records. These are structured as blocks of 1 summary
record (which contains multiple array summaries, providing metadata about each array), followed
by 1 name record (comprising names for the corresponding arrays whose summaries were in the
previous summary record) and finally by as many element records as required to store the arrays
described in the corresponding summary records. For a detailed description of the DAF architecture,
see NAIF documentation (https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html).

This function allows to read any binary file with a DAF architecture in a generic way, without
applying any specific formatting to its contents. Note that this will result in just a list of the file
global metadata, comments and different arrays (each one with a summary, a name and a set of
elements). The number of elements and meaning of each included in each array, as well as the de-
scriptor integers and doubles contained in the summaries, vary for each specific file type. Therefore,
reading a DAF file generically is not likely to bring much meaningful information, unless a precise
understanding of the specific file format is taken into account later.

Usage

readBinDAF(filename)

Arguments

filename Path to the binary DAF file.

Value

A list with three elements. The first element, named metadata, corresponds to the "file record",
which is always the first record in a DAF file, and is a list with the following metadata elements:

fileType String of the format DAF/XXXX indicating the specific file format for the DAF
file

numDoublesSummary

Number of double precision numbers in each array summary

numIntsSummary Number of integers in each array summary

summaryRecordSizeDoubles

Size of each array summary in doubles

numCharsName Number of characters in each array name

description String with an internal name or description of the DAF file
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firstSummaryRecNum

Integer indicating which is the 1st summary record This can be used to infer the
number of comment files. For example, a value of 3 indicates that the 3rd record
is the 1st summary record. Since the 1st record is always the file record, this
means there is 1 comment record

lastSummaryRecNum

Integer indicating which is the last summary record
firstFreeAddress

Integer indicating the first free address (in bytes) of the file, i.e., the address of
the last byte of the last element record plus 1

endianString String indicating the endianness of the file. This is automatically taken into
account when reading the file. It can be either LTL-IEEE (little endianness) or
BIG-IEEE (big endianness), and is determined by the architecture of the system
where the file was written

ftpString String used to verify integrity of the DAF file. It should be exactly equal to
"FTPSTR:\r:\n:\r\n:\r:\x81:\020\xce:ENDFTP"

The second element is named comments, and is a character vector where each element is a line of
comments.

The third element is named arrays, and is a nested list where each top-level element represents one
of the arrays stored in the DAF file and its associated metadata. Each of the top-level elements is
itself a list with the following 3 elements:

arrayName String with the name of the array

arraySummary A list with the multiple doubles and integers that are stored in each array sum-
mary of summary records and which provide metadata describing each array.
The elements are named as Double1, Double2, ..., DoubleN; Integer1, Inte-
ger2, ..., Integer(M-2) and finally initialArrayAddress and finalArrayAddress.
N and M are respectively the number of doubles and integers in each array sum-
mary, and are given in elements numDoublesSummary and numIntsSummary of
the metadata element of the top-level list. Note that the number of doubles and
integers describing each array, as well as the meaning of each, varies between
different specific file formats, and therefore no exact meaning can be derived
when simply reading the file as a generic DAF file. The exception to this are the
last 2 integers, which always are respectively the initial and final addresses of
the elements corresponding to the array within the DAF file, in double precision
numbers (and therefore, in order to obtain byte addresses it must be multiplied
by 8 and subtract 7)

arrayElements A numeric vector with all the elements of the array. Note that this includes
potentially constants, actual data and additional array metadata. Furthermore,
the number, order and meaning of the elements differs greatly between different
specific types and subtypes of DAF files, and therefore it is hard to extract any
meaningful information without knowledge of the internal organization of each
array

References

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/daf.html
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Examples

# The file vgr2_jup230.bsp provided with the package includes information for the
# Jupiter flyby of Voyager 2

testDAF <- readBinDAF(paste0(path.package("asteRisk"), "/vgr2_jup230.bsp"))
testDAF$metadata
# The file seems to be of type SPK
testDAF$comments
length(testDAF$arrays)
# It contains a single array

readBinSPK Read a binary SPK file

Description

SPK (Spacecraft and Planet Kernel) is a binary file format developed by NAIF to store ephemerides
(trajectory) of celestial bodies and spacecraft in the Solar System. The file format is based on the
DAF architecture (see readBinDAF). A detailed description of the SPK file format can be found in
NAIF’s documentation (https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html).

Each SPK file contains several segments, with each segment comprising a summary (or descriptor),
a name and an array of double precision elements. Each segment is conceptually equivalent to an
array in the context of generic DAF files. There are several types of SPK segments defined by NAIF,
each identified by an SPK type code currently ranging from 1 to 21 (some intermediate values
are not used or not available for general public use). Each segment type provides ephemerides
information in a different way. Note that the segments stored in a single SPK file can be of different
types. A detailed description of the organization of the arrays for each SPK type can be found at
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html

This function allows to read SPK binary files of all types except 4, 6, 7 and 16. The data will
be presented properly formatted and the meaning of each element is assigned during the reading
process of the file. It should be noted that this function just reads SPK kernels; it does not provide
any evaluation of ephemerides at arbitrary target times. The process of performing such evaluation
differs between SPK types. For example, types 2, 3, 14 and 20 require Chebyshev interpolation;
typees 8 and 9 require Lagrange interpolation; type 10 requires the aplication of SGP4/SDP4, etc.
Nevertheless, it is still possible to obtain direct ephemerides information just by reading the SPK
kernels since many of the types often include reference state vectors between which interpolation is
applied, but that can be directly used at the epochs corresponding to said reference state vectors.

Usage

readBinSPK(filename)

Arguments

filename Path to the binary SPK file.
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Value

A list with two elements. The first element, named comments, is a character vector where each
element is a line of comments.

The second element is named segments, and is a nested list where each top-level element repre-
sents one of the segments stored in the SPK file and its associated metadata. Each of the top-level
elements is itself a list with the following 3 elements:

• segmentName : String with the name of the segment

• segmentSummary : A list with the multiple doubles and integers that are stored in each array
summary of summary records and which provide metadata describing each array. In the case
of SPK files, these are always the following 9 elements:

– SPKType : A description of the type of SPK segment
– initialEpoch : The initial epoch for the interval for which ephemeris data are provided in

the segment, in ephemeris seconds (equivalent to TDB seconds) past Julian year 2000
– finalEpoch : The initial epoch for the interval for which ephemeris data are provided in

the segment, in ephemeris seconds (equivalent to TDB seconds) past Julian year 2000
– targetNAIFCode : The NAIF integer code for the object for which the segment provides

ephemerides. For details, see https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html
– targetNAIFCode : The NAIF integer code for the central body of the reference frame in

which the segment provides ephemerides. For details, see https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html
– frameNAIFCode : The NAIF frame code for the reference frame in which the segment

provides ephemerides. For details, see https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html
– SPKType : The SPK type code for the segment
– initialArrayAddress : The initial address of the array elements corresponding to this seg-

ment within the SPK file, in double precision numbers (in order to obtain byte address,
multiply by 8 and subtract 7)

– finalArrayAddress : The final address of the array elements corresponding to this segment
within the SPK file, in double precision numbers (in order to obtain byte address, multiply
by 8 and subtract 7)

• segmentData : A list with the actual ephemeris data contained in the segment, as well as some
type-specific additional metadata

The contents of the last element, segmentData, are different for each SPK type. Here a summary is
provided for each one, but for more detailed descriptions see NAIF’s documentation.

For type 1, which provide Modified Difference Arrays (MDAs), a list where each element is one of
the records of the segment. Each of these elements contains the following elements:

referenceEpoch The reference epoch that should be used when using this MDA to compute a
state vector

referenceEpoch The final epoch for which this MDA should be used to compute a state vector
stepsizeFunctionVector

A vector of differences between the reference point and the epochs of all the
other data points used to fit the interpolation polynomials from which the MDA
is derived. This is of length 15
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referencePosition

A numeric vector of length 3 containing the X, Y and Z components of the
position at the reference epoch, in km

referencePosition

A numeric vector of length 3 containing the X, Y and Z components of the
velocity at the reference epoch, in km/s

MDA A matrix with 15 rows and 3 columns providing the constant coefficients to in-
terpolate position, velocity and acceleration at a target epoch. The 1st, 2nd and
3rd columns give the coefficients for the X, Y and Z components respectively.
The given coefficients basically are the coefficients of the interpolation polyno-
mial when expressed in Modified Divided Differences (MDD) form. For details,
see Shampine and Gordon, 1975. Note that even though the matrix will always
have 15 rows (corresponding to 15 coefficients for each components, or an in-
terpolation polynomial degree of 14), some of these can have a value of 0 up to
the 15th row, effectively leading to an interpolation polynomial of degree lower
than 14.

maxIntegrationOrderP1

The maximum order for the interpolation polynomial that should be applied
amongst all 3 components plus 1. For example, if the interpolation polynomial
orders for the X, Y and Z components are 6, 8 and 7 respectively, this element
will have a value of 9 ((max(c(6,8,7))+1)).

integrationOrderArray

A vector of 3 integers indicating the order of the interpolation polynomials that
should be applied for the X, Y and Z components of acceleration respectively.

A brief description is provided here for the meaning of the coefficients, based on the ’SPICE spke01
math’ monograph by Robert Werner. MDAs are a modified version of the more standard coefficients
obtained through the divided differences method, which represent an interpolation polynomial in
Newton form. In order to calculate a position and velocity, first the basis functions must be com-
puted for both position and velocity. Then each of the components of the basis functions (each of an
increasing degree) must be multiplied by the corresponding MDA coefficient, and all the resulting
terms are summed.

For type 2, which provide Chebyshev coefficients for position only and at equally spaced time steps,
a list with the following elements:

• polynomialDegree : An integer indicating the order of the interpolation polynomial that should
be applied for all the components.

• chebyshevCoefficients : A matrix where each row corresponds to an interpolation interval,
and with the following columns:

– initialEpoch : Initial epoch of the interpolation intervals, in ephemeris (TDB) seconds
since J2000

– midPoint : Epoch for the midpoint of the interpolation intervals, in ephemeris (TDB)
seconds since J2000

– intervalRadius : Radius of the interpolation intervals, in seconds)
– positionXCoeffi : A set of N columns, with i ranging from 1 to N, providing the Cheby-

shev coefficients for the X component of the position. N is the number of coefficients for
each component, which is equal to polynomialDegree + 1
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– positionYCoeffi : As positionXCoeffi, but for the Y component of position.
– positionZCoeffi : As positionXCoeffi, but for the Z component of position.

For type 3, which provide Chebyshev coefficients for position and velocity and at equally spaced
time steps, the same as for type 2, but chebyshevCoefficients contains the following additional
elements:

velocityXCoeffi

A set of N columns, with i ranging from 1 to N, providing the Chebyshev coef-
ficients for the X component of the velocity. N is the number of coefficients for
each component, which is equal to polynomialDegree + 1

velocityYCoeffi

As velocityXCoeffi, but for the Y component of velocity.
velocityZCoeffi

As velocityXCoeffi, but for the Z component of velocity.

For type 5, which provide discrete state vectors to be propagated following the laws of two-body
motion, a list with the following elements:

• centralBodyGM The GM parameter (gravitational constant) for the central body, in cube kilo-
meters per square seconds

• stateVectors A matrix where each row corresponds to a state vector, and with the following
columns:

– epoch : Epoch of the state vectors intervals, in ephemeris (TDB) seconds since J2000
– positionX : X component of the position, in km
– positionY : Y component of the position, in km
– positionZ : Z component of the position, in km
– velocityX : X component of the velocity, in km/s
– velocityY : Y component of the velocity, in km/s
– velocityZ : Z component of the velocity, in km/s

For type 8, which provide discrete state vectors at equally spaced time steps to which Lagrange in-
terpolation should be applied to obtain state vectors at arbitrary target times, a list with the following
elements:

• polynomialDegree : The degree of the interpolation polynomial that should be applied

• stateVectors : A matrix where each row corresponds to a state vector, and with the following
columns:

– epoch : Epoch of the state vectors intervals, in ephemeris (TDB) seconds since J2000
– positionX : X component of the position, in km
– positionY : Y component of the position, in km
– positionZ : Z component of the position, in km
– velocityX : X component of the velocity, in km/s
– velocityY : Y component of the velocity, in km/s
– velocityZ : Z component of the velocity, in km/s
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For type 9, which provide discrete state vectors at unequally spaced time steps to which Lagrange
interpolation should be applied to obtain state vectors at arbitrary target times, the same as for type
8.

For type 10, which provide TLE that should be propagated with SGP4/SDP4, a list with the follow-
ing elements:

• constants : A list with the following constants used by SGP4/SDP4:

– J2 : J2 parameter (dimensionless)
– J3 : J3 parameter (dimensionless)
– J4 : J4 parameter (dimensionless)
– sqrtGM : Square root of the GM parameter, where GM is in cube Earth radii per square

minutes
– highAltBound : High altitude boundary for atmospheric model (in km)
– lowAltBound : Low altitude boundary for atmospheric model (in km)
– earthRadius : Equatorial radius of Earth (in km)
– distUnitsPerRadius : Distance units per Earth radius. This is usually 1. If different than

1, interprete results with caution

• TLEs : A matrix where each row corresponds to a TLE, and with the following columns
(nutation angles and their rates are not present in some old SPK files, in which case they will
have NULL values):

– epoch : Epoch of the TLE, in ephemeris (TDB) seconds since J2000
– meanMotionDerivative : First derivative of the mean motion in radians/min^2
– meanMotionSecondDerivative : Second derivative of the mean motion in radians/min^3
– Bstar : Drag coefficient of the satellite in units of (earth radii)^-1. Bstar is an adjusted

value of the ballistic coefficient of the satellite, and it indicates how susceptible it is to
atmospheric drag.

– inclination : Mean orbital inclination of the satellite in radians
– ascension : Mean longitude of the ascending node of the satellite at epoch, also known as

right ascension of the ascending node, in radians
– eccentricity : Mean eccentricity of the orbit of the object
– perigeeArgument : Mean argument of the perigee of the object in radians
– meanAnomaly : Mean anomaly of the orbit of the object in radians
– meanMotion : Mean motion of the satellite at epoch in radians/min
– deltaPsi : Obliquity (psi angle) of the nutation at epoch, in radians
– deltaEpsilon : Longitude (epsilon angle) of the nutation at epoch, in radians
– deltaPsiDerivative : Derivative of the obliquity (psi angle) of the nutation at epoch, in

radians/second
– deltaEpsilonDerivative : Derivative of the longitude (epsilon angle) of the nutation at

epoch, in radians/second

For type 12, which provide discrete state vectors at equally spaced time steps to which Hermite
interpolation should be applied to obtain state vectors at arbitrary target times, the same as for type
8, but the list contains an additional element:

windowSize The window size that should be applied during interpolation
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For type 13, which provide discrete state vectors at unequally spaced time steps to which Hermite
interpolation should be applied to obtain state vectors at arbitrary target times, the same as for type
12.

For type 14, which provide Chebyshev coefficients for position and velocity and at unequally spaced
time steps, the same as for type 3.

For type 15, which provide elements for calculation of ephemerides through the application of a
precessing conic propagation model, a list with the following elements:

epochPeriapsis Epoch of the periapsis passage in ephemeris (TDB) seconds since J2000
unitVectorTrajectoryPoleX

X component of the unit trajectory pole vector, in km
unitVectorTrajectoryPoleY

Y component of the unit trajectory pole vector, in km
unitVectorTrajectoryPoleZ

Z component of the unit trajectory pole vector, in km
unitVectorPeriapsisX

X component of the unit periapsis vector, in km
unitVectorPeriapsisY

Y component of the unit periapsis vector, in km
unitVectorPeriapsisZ

Z component of the unit periapsis vector, in km
semiLatusRectum

Semi-latus rectum, in km

eccentricity Eccentricity of the orbit
J2ProcessingFlag

Flag indicating what J2 corrections should be applied when propagating. If 1,
regress line of nodes only. If 2, precess line of apsides only. If 3, don’t use
any corrections. For any other values, regress line of nodes and precess line of
apsides

unitVectorCentralBodyPoleX

X component of the unit central body pole vector, in km
unitVectorCentralBodyPoleY

Y component of the unit central body pole vector, in km
unitVectorCentralBodyPoleZ

Z component of the unit central body pole vector, in km

centralBodyGM The GM parameter (gravitational constant) for the central body, in cube kilome-
ters per square seconds

centralBodyJ2 The J2 parameter for the central body (dimensionless)
centralBodyRadius

Radius of the central body, in km

For type 17, which provide equinoctial elements modelling an object following an elliptic orbit with
precessing line of nodes and argument of periapse relative to the equatorial frame of a central body,
a list with the following elements:

epochPeriapsis Epoch of the periapsis passage in ephemeris (TDB) seconds since J2000
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semiMajorAxis Semi-major axis of the orbit, in km

equinoctialH Value of the equinoctial parameter H at epoch

equinoctialK Value of the equinoctial parameter K at epoch

meanLongitude Mean longitude of the orbit at epoch, in radians

equinoctialP Value of the equinoctial parameter P

equinoctialQ Value of the equinoctial parameter Q
longitudePeriapsisDerivative

Derivative of the longitude of periapse at epoch (but it is assumed to be constant
at other times), in radians/s

meanLongitudeDerivative

Derivative of the mean longitude at epoch (but it is assumed to be constant at
other times), in radians/s

longitudeAscendingNodeDerivative

Derivative of the longitude of the ascending node at epoch, in radians/s
equatorialPoleRightAscension

Right ascension of the pole of the orbital reference system relative to the refer-
ence frame of the corresponding SPK segment, in radians

equatorialPoleDeclination

Declination of the pole of the orbital reference system relative to the reference
frame of the corresponding SPK segment, in radians

For type 18, which provide ephemerides in the format used by ESA on the Mars Express, Rosetta,
SMART-1 and Venus Express missions (although applicable to any other object), there are 2 dif-
ferent subtypes: subtype 0 and subtype 1. Subtype 0 should be used to perform sliding-window
Hermite interpolation of position and velocity independently. Subtype 1 should be used to per-
form sliding-window Lagrange interpolation of position and velocity independently. In both cases,
segmentData is a list with the following elements:

• subTypeCode : Subtype code for the type 18 SPK segment

• polynomialDegree : An integer indicating the order of the interpolation polynomial that should
be applied for all the components.

• interpolationType : Type of the interpolation that should be applied. Hermite for subtype 0,
and Lagrange for subtype 1

• windowSize : The window size that should be applied during interpolation

• meanLongitude : Mean longitude of the orbit at epoch, in radians

• stateVectors : A matrix where each row corresponds to a state vector. The columns differ
depending on the subtype. The following will always be present:

– epoch : Epoch of the state vectors intervals, in ephemeris (TDB) seconds since J2000
– positionX : X component of the position, in km
– positionY : Y component of the position, in km
– positionZ : Z component of the position, in km

The following are present for subtype 0:

– firstVelocityX : X component of the first velocity value, in km/s. The first velocity value
should be used together with the reference position to interpolate position values
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– firstVelocityY : Y component of the first velocity value, in km/s
– firstVelocityZ : Z component of the first velocity value, in km/s
– secondVelocityX : X component of the second velocity value, in km/s. The second veloc-

ity value should be used together with the reference acceleration to interpolate velocity
values

– secondVelocityY : Y component of the second velocity value, in km/s
– secondVelocityZ : Z component of the second velocity value, in km/s
– accelerationX : X component of the acceleration, in km/s^2
– accelerationY : Y component of the acceleration, in km/s^2
– accelerationZ : Z component of the acceleration, in km/s^2

The following are present for subtype 1:

– velocityX : X component of the velocity, in km/s
– velocityY : Y component of the velocity, in km/s
– velocityZ : Z component of the velocity, in km/s

For type 19, which provides the same data as type 18 but condensing multiple type 18 segments into
a single 19 segments (only possible if all the segments have the same target object, central body and
reference frame; additionally, the coverage of the segments must overlap only at endpoints and leave
no gaps), a list with the following 2 elements:

• boundaryChoiceFlag : A flag indicating which minisegment should be used for the epochs at
which 2 minisegments overlap. If 0, the earlier minisegment that ends at that epoch is used. If
1, the later minisegment that begins at that epoch is used

• minisegments : A nested list where each top-level element represents a type 19 subsegment
(called minisegments in NAIF’s documentation), each of which is a list with the same elements
as a segmentData for a type 18 SPK segment, plus the following 2 additional elements:

– intervalStartEpoch : Beginning of the interpolation interval covered by this minisegment,
in ephemeris (TDB) seconds since J2000

– intervalEndEpoch : End of the interpolation interval covered by this minisegment, in
ephemeris (TDB) seconds since J2000 Furthermore, a third subtype can be found in type
19 minisegments which is not found for type 18 segments (at least according to NAIF’s
documentation). This has subtype code 2, and should be used to perform sliding-window
Hermite interpolation of position and velocity together (note the difference with sub-
type 0, where position and velocity are interpolated independently). In this case, ele-
ment interpolationType has a value of "Hermite-joint", and the element describing the
minisegment contains the same elements as a type 18 SPK segment of subtype 1 (and not
of subtype 0).

For type 20, which provide which provide Chebyshev coefficients for velocity only and at equally
spaced time steps together with a reference position (so that position can be interpolated by integra-
tion of velocity), a list with the following elements:

• polynomialDegree : An integer indicating the order of the interpolation polynomial that should
be applied for all the components.

• dScale : Distance scale used for both position and velocity, in km. For example, if dScale has
a value of 149597870.7 (the length of an astronomical unit, AU, in km), it means the distance
units are AU.
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• tScale : Time scale used for velocity, in TDB seconds. For example, a value of 1 means we
are using velocity directly in TDB seconds. A value of 86400 means the time units of velocity
would be TDB Julian days, etc.

• chebyshevCoefficients : A matrix where each row corresponds to an interpolation interval,
and with the following columns:

– initialEpoch : Initial epoch of the interpolation intervals, in ephemeris (TDB) seconds
since J2000

– midPoint : Epoch for the midpoint of the interpolation intervals, in ephemeris (TDB)
seconds since J2000

– intervalRadius : Radius of the interpolation intervals, in seconds)
– velocityXCoeffi : A set of N columns, with i ranging from 1 to N, providing the Cheby-

shev coefficients for the X component of the velocity. N is the number of coefficients for
each component, which is equal to polynomialDegree + 1

– velocityYCoeffiAs velocityXCoeffi, but for the Y component of velocity.
– velocityZCoeffiAs velocityXCoeffi, but for the Z component of velocity.
– midPointPositionX : X component of the reference position, valid at the midpoint of the

interpolation interval. Should be used to interpolate position through integration.
– midPointPositionYAs midPointPositionX, but for the Y component of velocity.
– midPointPositionZAs midPointPositionX, but for the Z component of velocity.

For type 21, which, like type 1, also provide MDAs, the same nested list as for type 1, with 2
differences. Firstly, unlike for type 1, MDAs of type 21 segments are not limited to a maximum
of 15 coefficients per component. Second, each top-level element of the nested list contains an
additional element:

numberCoefficients

The number of coefficients provided for the component with the highest inter-
polation order

References

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html Shampine, L. F. and Gordon, M.
K., Computer Solution of Ordinary Differential Equations: The Initial Value Problem, 1975 Robert
Werner, SPICE spke01 math, 2022. https://doi.org/10.5270/esa-tyidsbu

Examples

# The file vgr2_jup230.bsp provided with the package includes information for the
# Jupiter flyby of Voyager 2

testSPK <- readBinSPK(paste0(path.package("asteRisk"), "/vgr2_jup230.bsp"))
length(testSPK$segments)
# It contains a single segment
testSPK$segments[[1]]$segmentSummary$SPKType
testSPK$segments[[1]]$segmentSummary$SPKTypeCode
# The segment is of type 1, containing Modified Difference Arrays
length(testSPK$segments[[1]]$segmentData)
# It contains 566 MDAs
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readGLONASSNavigationRINEX

Read a RINEX navigation file for GLONASS satellites

Description

RINEX (Receiver Independent Exchange Format) is one of the most widely used formats for pro-
viding data of satellite navigation systems. The RINEX standard defines several structured text
file types, among which navigation files are used to distribute positional information of the satel-
lites. The exact information provided in a RINEX navigation file varies for each satellite navigation
system. This function reads RINEX navigation files for satellites of the GLONASS constellation,
operated by Russia.

Usage

readGLONASSNavigationRINEX(filename)

Arguments

filename Path to the GLONASS RINEX navigation file.

Value

A list with two elements. The first element, named header, is a list with the information contained
in the header of the RINEX file. For files using RINEX major version 2, it contains the following
elements:

rinexVersion Version of the RINEX format used in the file

rinexFileType Type of RINEX file
generatorProgram

Program used to generate the RINEX file
generatorEntity

Individual or organization that generated the file
fileCreationDateString

Date-time string indicating when the file was created

refYear Reference year for system time correction

refMonth Reference month for system time correction

refDay Reference day for system time correction
sysTimeCorrection

Correction to system time scale to fine-tune GLONASS time to UTC in seconds.
Since GLONASS time is linked to UTC, it should be a very small amount. This
is the negative of the parameter typically referred to as tauC.

leapSeconds Leap seconds introduced since 1980. Useful to convert to GPS time

comments Miscellaneous comments found in the header of the RINEX file



readGLONASSNavigationRINEX 43

For files using RINEX major version 3, it contains the following elements:

rinexVersion Version of the RINEX format used in the file

rinexFileType Type of RINEX file
satelliteSystem

Character indicating the satellite system. For GLONASS, it should be "R"
generatorProgram

Program used to generate the RINEX file
generatorEntity

Individual or organization that generated the file
fileCreationDateString

Date-time string indicating when the file was created
systemTimeCorrectionType

String indicating the type of system time correction, which defines the exact
meaning of the system time correction parameters A0 and A1 and between
what time systems these allow conversion. Possible values are (the definition
of A0/A1 are given between brackets): GAUT, for GAL to UTC (a0/a1); GPUT,
for GPS to UTC (a0/a1); SBUT, for SBAS to UTC (a0/a1); GLUT, for GLO
to UTC (TauC/0); GAGP or GPGA, for GPS to GAL (A0G/A1G); GLGP, for
GLO to GPS (TauGPS/0); QZGP, for QZS to GPS (a0/a1); QZUT, for QZS to
UTC (a0/a1); BDUT, for BDS to UTC (A0UTC/A1UTC); IRUT, for IRN to
UTC (A0UTC/A1UTC); IRGP, for IRN to GPS (A0/A1). Note that GLONASS
RINEX navigation files will typically contain system time corrections of types
either GLUT or GLGP

timeCorrectionA0

A0 parameter (bias) for system time correction in seconds. For corrections of
type GLUT, this is equivalent to the field sysTimeCorrection found in headers
of GLONASS RINEX navigation files of major version 2, i.e., the negative of
tauC. For corrections of type GLGP, this is equivalent to the parameter tauGPS

timeCorrectionA1

A1 parameter (drift) for system time correction in seconds/seconds. Note that
this is set to 0 in GLUT and GLGP correction types

timeCorrectionReferenceTime

Reference time for system time corrections, in seconds into GPS/GAL/BDS/QZS/IRN/SBAS
week. The correction to be applied to the system time should be calculated as:
Correction=A0 + A1*(ephemerisTime - timeCorrectionReferenceTime). Note
that GLONASS time is aligned with UTC + 3 hours at a precision of 1 ms, and
timeCorrectionReferenceTime is set to 0.

timeCorrectionReferenceWeekNumber

Reference week number for the system time correction reference time. For
GPS/GAL/QZS/IRN/SBAS, it is a continuous week scale since 6th of January
1980. For BDS, it is a continuous week scale since 1st of January 2006. For
GLONASS, it is set to 0

timeCorrectionSatelliteNumber

String indicating the GNSS satellite that is broadcasting the time system differ-
ence for system time correction
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UTCType String indicating the exact UTC type (specific UTC realization) to which system
time correction parameters refers to

leapSeconds Current number of leap seconds
deltaTimeLeapSeconds

Number of leap seconds at a reference date for leap seconds specified by the
following week number and week day. Note that the date specified by said week
number and day can be either in the past or future

deltaTimeLeapSecondsWeekNumber

Week number for the reference date to which deltaTimeLeapSeconds refers.
Given as continuous week number from either 6th of January 1980 (GPS week
number) or from 1st of January 2006 (BDS week number). Field leapSecond-
sTimeSystemIdentifier specifies which of the 2 systems is used.

deltaTimeLeapSecondsDayNumber

Day of week number for the reference date to which deltaTimeLeapSeconds
refers. Ranges from 1-7 for reference dates in GPS, or 0-6 for reference dates
in BDS. The first day of each week (1 for GPS, 0 for BDS) is considered to be
Sunday

leapSecondsTimeSystemIdentifier

String indicating the time system used for the week number and day number
for the future/past leap seconds reference date. Can be either "GPS" or "BDS"
(BeiDou)

leapSecondsTimeSystemIdentifier

String indicating the time system used for the week number and day number
for the future/past leap seconds reference date. Can be either "GPS" or "BDS"
(BeiDou)

ionosphericCorrections

List where each element contains the fields required to perform a given type of
ionospheric corrections. The contents of each element of this list are detailed
below

comments Miscellaneous comments found in the header of the RINEX file

As mentioned above, for RINEX files of version 3.00 and above, the header element contains a
list named ionosphericCorrections. Each element of this list is in turn a list itself, with the
following elements:

ionosphericCorrectionType

A string indicating the type of ionospheric correction for which this element pro-
vides coefficients. Can be GAL, GPSA, GPSB, QZSA, QZSB, BDSA, BDSB,
IRNA or IRNB. The specific coefficients given in the following elements vary
depending on the type of ionospheric correction. For GAL, 3 coefficients are
given (a0-a2). For GPSA, QZSA, BDSA and IRNA, 4 coefficients are given
(alpha0-alpha3). For GPSB, QZSB, BDSB and IRNB, 4 coefficients are given
(beta0-beta1)

coefficients 3 (for GAL correction) or 4 (for all other corrections) elements providing the
ionospheric correction coefficients. The names of the elements vary depending
on the type of correction, as stated above
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ionosphericCorrectionTimeMark

Character indicating the transmission time. The field is only mandatory for cor-
rections of type BDSA and BDSB. It can be a letter from "A" to "X", with each
letter indicating a 1-hour interval: A=00h-01h, B=01h-02hB, ..., X=23h-24h

ionosphericCorrectionTimeMark

Character indicating the transmission time. The field is only mandatory for cor-
rections of type BDSA and BDSB. It can be a letter from "A" to "X", with each
letter indicating a 1-hour interval: A=00h-01h, B=01h-02hB, ..., X=23h-24h

ionosphericCorrectionSV

String indicating the satellite that provided the ionospheric correction parame-
ters. The field is only mandatory for BDSA and BDSB corrections. If multiple
sources are available for the same type of BDSA/BDSB correction, these should
be given priority according to the satellite that provided them as follows: BDS
GEO satellites first, followed by BDS IGSO satellites, and finally BDS MEO
satellites

The second element is named messages, and it contains one element for each navigation message
found in the RINEX file. Each of these elements is a list with the following elements that provide
information about the position of the GLONASS satellite:

satelliteNumber

Slot number of the satellite within the GLONASS constellation. It can be con-
verted to a PRN code by adding 37 to it

epochYear Epoch year in 4-digit format.

epochMonth Epoch month

epochDay Epoch day

epochHour Epoch hour

epochMinute Epoch minute

epochSecond Epoch second
ephemerisUTCTime

A nanotime object indicating the time corresponding to the reported position
(ephemeris) in the present message. The time is in UTC, obtained by applying
the individual clock bias of the particular satellite (clockBias field of each mes-
sage) and the latest global GLONASS time bias with respect to UTC (sysTimeCorrection
field of the header) to the uncorrected ephemeris time, given by the previous
time fields. Corrections are performed as described in the GLONASS system
specifications (http://gauss.gge.unb.ca/GLONASS.ICD.pdf)

clockBias Clock bias (i.e., constant offset) that should be applied to the satellite time in
order to obtain an even more accurate UTC time. In seconds

relativeFreqBias

Clock drift of the satellite clock that should be applied in combination with the
time difference to the reference time in order to obtain an even more accurate
UTC time. In seconds per second

messageFrameTime

Second of the UTC day when the message was transmitted

positionX X coordinate of the position of the satellite in km, in the ITRF system of coor-
dinates
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positionY Y coordinate of the position of the satellite in km, in the ITRF system of coor-
dinates

positionZ Z coordinate of the position of the satellite in km, in the ITRF system of coordi-
nates

velocityX X component of the velocity of the satellite in km/s, in the ITRF system of
coordinates

velocityY Y component of the velocity of the satellite in km/s, in the ITRF system of
coordinates

velocityZ Z component of the velocity of the satellite in km/s, in the ITRF system of
coordinates

accelX X component of the accel of the satellite in km/s, in the ITRF system of coordi-
nates

accelY Y component of the accel of the satellite in km/s, in the ITRF system of coordi-
nates

accelZ Z component of the accel of the satellite in km/s, in the ITRF system of coordi-
nates

satelliteHealthCode

Code indicating the health of the satellite. 0 if healthy

freqNumber Frequency number (k) of the GLONASS satellite. The two frequencies in MHz,
f1 and f2, used by the satellite to transmit data can be calculated as follows: f1
= 1602 + k*9/16 and f2 = 1246 + k*7/16

informationAge Age in days of the observation data used to generate the provided ephemeris

For GLONASS RINEX navigation files of version 3.05 and above, each message element contains
the following additional elements:

GLONASSType String indicating the type of GLONASS satellite. Can be either "GLO" for fist-
generation GLONASS satellites, or "GLO-M/K" for second or third generation
satellites

updatedDataFlag

Logical indicating if the provided ephemeris data is up to date
numberSatellitesAlmanac

Number of satellites in the almanac for the current transmitted frame. Can be
either 4 or 5. Note that almanac data provide coarser information about the
location of multiple satellites in a GNSS constellation, and these are not actually
included in RINEX navigation files.

ephemerisValidityTimeInterval

Length of the time interval for which the ephemeris is valid, in minutes. Can be
0, 30, 45 or 60.

parityEphemerisValidityTimeInterval

String indicating the evenness or oddity of the time interval for which ephemeris
is valid. "Odd" for intervals of 45 minutes, and "Even" for the rest.

tauCSource String indicating the source providing the value of the tauC parameter, given in
the header in field sysTimeCorrection for RINEX navigation messages of ver-
sion 2, or field timeCorrectionA0 for RINEX navigation messages of version
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3 where a time system correction of type GLUT is given. Can be either "On-
board" (if it was computed by the on-board satellite processor) or "Ground"
(computed and uploaded to the satellite by control segment)

tauGPSSource String indicating the source providing the value of the tauGPS parameter, given
in the header in field timeCorrectionA0 for RINEX navigation messages of
version 3 where a time system correction of type GLGP is given. Can be either
"On-board" (if it was computed by the on-board satellite processor) or "Ground"
(computed and uploaded to the satellite by control segment)

totalGroupDelay

Bias difference between codes broadcasted on L1 and the ionospheric-free com-
bination of the codes broadcasted at L1 and L2, in seconds. This parameter, also
known as timing group delay (TGD), should be considered when calculating
satellite clock error.

URAI Value of User Range Accuracy Index (URAI). This is an index giving a mea-
surement of the accuracy of the GNSS ranging accuracy. It is an integer ranging
from 0 to 15. 0 indicates the highest accuracy, corresponding to an accuracy of
1 m, while 14 indicates the lowest accuracy, of 512 m. A value of 15 indicates
unknown accuracy. For a complete table of equivalence between URAI values
and ranging accuracy in meters, see Table 4.4 of GLONASS Interface Control
Document (http://gauss.gge.unb.ca/GLONASS.ICD.pdf)

almanacHealthStatus

String indicating the health status of the satellite provided in the almanac (as
previously mentioned, full almanac data are not present in RINEX navigation
files))

References

https://gage.upc.edu/gFD/ https://www.navcen.uscg.gov/pubs/gps/rinex/rinex.txt ftp://www.ngs.noaa.gov/cors/RINEX211.txt
http://acc.igs.org/misc/rinex304.pdf http://gauss.gge.unb.ca/GLONASS.ICD.pdf

Examples

# The file testGLONASSRINEXv2.txt provided with the package includes 5 navigation
# messages from 4 GLONASS satellites

testGLONASSnav <- readGLONASSNavigationRINEX(paste0(path.package("asteRisk"),
"/testGLONASSRINEXv2.txt"))
testGLONASSnav$header
testGLONASSnav$messages

readGPSNavigationRINEX

Read a RINEX navigation file for GPS satellites
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Description

RINEX (Receiver Independent Exchange Format) is one of the most widely used formats for pro-
viding data of satellite navigation systems. The RINEX standard defines several structured text file
types file types, among which navigation files are used to distribute positional information of the
satellites. The exact information provided in a RINEX navigation file varies for each satellite nav-
igation system. This function reads RINEX navigation files for satellites of the GPS constellation,
operated by the USA.

Usage

readGPSNavigationRINEX(filename)

Arguments

filename Path to the GPS RINEX navigation file.

Value

A list with two elements. The first element, named header, is a list with the information contained
in the header of the RINEX file. For files using RINEX major version 2, it contains the following
elements:

rinexVersion Version of the RINEX format used in the file

rinexFileType Type of RINEX file
generatorProgram

Program used to generate the RINEX file
generatorEntity

Individual or organization that generated the file
fileCreationDateString

Date-time string indicating when the file was created

ionAlphaA0 Coefficient for ionospheric correction A0

ionAlphaA1 Coefficient for ionospheric correction A1

ionAlphaA2 Coefficient for ionospheric correction A2

ionAlphaA3 Coefficient for ionospheric correction A3

ionBetaB0 Coefficient for ionospheric correction B0

ionBetaB1 Coefficient for ionospheric correction B1

ionBetaB2 Coefficient for ionospheric correction B2

ionBetaB3 Coefficient for ionospheric correction B3

deltaUTCA0 A0 parameter, corresponding to bias between GPST and UTC time at the ref-
erence time (Tot) given by fields referenceTimeUTC and referenceWeekUTC.
Should be used to compute accurate time in UTC

deltaUTCA1 A1 parameter, corresponding to the clock drift between GPST and UTC at the
reference time (Tot) given by fields referenceTimeUTC and referenceWeekUTC.
Should be used to compute accurate time in UTC
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referenceTimeUTC

Time in seconds of current UTC week of Tot, which is the reference time to
correct GPST time to UTC

referenceWeekUTC

UTC reference week number (continuous scale, not modulo 1024) of Tot.

leapSeconds Leap seconds introduced since the 6th of January, 1980. Useful to convert to
UTC time (UTC time = GPS time - leap seconds)

comments Miscellaneous comments found in the header of the RINEX file

For files using RINEX major version 3, it contains the following elements:

rinexVersion Version of the RINEX format used in the file

rinexFileType Type of RINEX file
satelliteSystem

Character indicating the satellite system. For GLONASS, it should be "R"
generatorProgram

Program used to generate the RINEX file
generatorEntity

Individual or organization that generated the file

fileCreationDateString

Date-time string indicating when the file was created
systemTimeCorrectionType

String indicating the type of system time correction, which defines the exact
meaning of the system time correction parameters A0 and A1 and between
what time systems these allow conversion. Possible values are (the definition
of A0/A1 are given between brackets): GAUT, for GAL to UTC (a0/a1); GPUT,
for GPS to UTC (a0/a1); SBUT, for SBAS to UTC (a0/a1); GLUT, for GLO to
UTC (TauC/0); GAGP or GPGA, for GPS to GAL (A0G/A1G); GLGP, for GLO
to GPS (TauGPS/0); QZGP, for QZS to GPS (a0/a1); QZUT, for QZS to UTC
(a0/a1); BDUT, for BDS to UTC (A0UTC/A1UTC); IRUT, for IRN to UTC
(A0UTC/A1UTC); IRGP, for IRN to GPS (A0/A1). Note that GPS RINEX
navigation files will typically contain system time corrections of type GPUT

timeCorrectionA0

A0 parameter (bias) for system time correction in seconds
timeCorrectionA1

A1 parameter (drift) for system time correction in seconds/seconds

timeCorrectionReferenceTime

Reference time for system time corrections, in seconds into GPS/GAL/BDS/QZS/IRN/SBAS
week. The correction to be applied to the system time should be calculated as:
Correction=A0 + A1*(ephemerisTime - timeCorrectionReferenceTime)

timeCorrectionReferenceWeekNumber

Reference week number for the system time correction reference time. For
GPS/GAL/QZS/IRN/SBAS, it is a continuous week scale since 6th of January
1980. For BDS, it is a continuous week scale since 1st of January 2006. For
GLONASS, it is set to 0
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timeCorrectionSatelliteNumber

String indicating the GNSS satellite that is broadcasting the time system differ-
ence for system time correction

UTCType String indicating the exact UTC type (specific UTC realization) to which system
time correction parameters refers to

leapSeconds Current number of leap seconds

deltaTimeLeapSeconds

Number of leap seconds at a reference date for leap seconds specified by the
following week number and week day. Note that the date specified by said week
number and day can be either in the past or future

deltaTimeLeapSecondsWeekNumber

Week number for the reference date to which deltaTimeLeapSeconds refers.
Given as continuous week number from either 6th of January 1980 (GPS week
number) or from 1st of January 2006 (BDS week number). Field leapSecond-
sTimeSystemIdentifier specifies which of the 2 systems is used.

deltaTimeLeapSecondsDayNumber

Day of week number for the reference date to which deltaTimeLeapSeconds
refers. Ranges from 1-7 for reference dates in GPS, or 0-6 for reference dates
in BDS. The first day of each week (1 for GPS, 0 for BDS) is considered to be
Sunday

leapSecondsTimeSystemIdentifier

String indicating the time system used for the week number and day number
for the future/past leap seconds reference date. Can be either "GPS" or "BDS"
(BeiDou)

leapSecondsTimeSystemIdentifier

String indicating the time system used for the week number and day number
for the future/past leap seconds reference date. Can be either "GPS" or "BDS"
(BeiDou)

ionosphericCorrections

List where each element contains the fields required to perform a given type of
ionospheric corrections. The contents of each element of this list are detailed
below

comments Miscellaneous comments found in the header of the RINEX file

As mentioned above, for RINEX files of version 3.00 and above, the header element contains a
list named ionosphericCorrections. Each element of this list is in turn a list itself, with the
following elements:

ionosphericCorrectionType

A string indicating the type of ionospheric correction for which this element pro-
vides coefficients. Can be GAL, GPSA, GPSB, QZSA, QZSB, BDSA, BDSB,
IRNA or IRNB. The specific coefficients given in the following elements vary
depending on the type of ionospheric correction. For GAL, 3 coefficients are
given (a0-a2). For GPSA, QZSA, BDSA and IRNA, 4 coefficients are given
(alpha0-alpha3). For GPSB, QZSB, BDSB and IRNB, 4 coefficients are given
(beta0-beta1)
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coefficients 3 (for GAL correction) or 4 (for all other corrections) elements providing the
ionospheric correction coefficients. The names of the elements vary depending
on the type of correction, as stated above

ionosphericCorrectionTimeMark

Character indicating the transmission time. The field is only mandatory for cor-
rections of type BDSA and BDSB. It can be a letter from "A" to "X", with each
letter indicating a 1-hour interval: A=00h-01h, B=01h-02hB, ..., X=23h-24h

ionosphericCorrectionTimeMark

Character indicating the transmission time. The field is only mandatory for cor-
rections of type BDSA and BDSB. It can be a letter from "A" to "X", with each
letter indicating a 1-hour interval: A=00h-01h, B=01h-02hB, ..., X=23h-24h

ionosphericCorrectionSV

String indicating the satellite that provided the ionospheric correction parame-
ters. The field is only mandatory for BDSA and BDSB corrections. If multiple
sources are available for the same type of BDSA/BDSB correction, these should
be given priority according to the satellite that provided them as follows: BDS
GEO satellites first, followed by BDS IGSO satellites, and finally BDS MEO
satellites

The second element is named messages, and it contains one element for each navigation message
found in the RINEX file. Each of these elements is a list with the following elements that provide
information about the position of the GPS satellite:

satellitePRNCode

PRN code of the satellite. Unique PRN codes are assigned to all satellites in
global navigation satellite systems, and therefore provide an identifier for each
of them

tocYear Toc year in 4-digit format. Toc is the GPS time of the specific satellite that
should be used as the time reference to apply clock bias, clock drift and possibly
even clock drift rate, as well as a relativistic correction, as described in the GPS
system specification (https://www.gps.gov/technical/icwg/IS-GPS-200H.pdf) to
obtain the corrected GPST system time. The GPST system time can be con-
verted to UTC time by subtracting leap seconds since the 6th of January 1980
and performing another polynomial correction to account for bias and drift be-
tween GPST and UTC times.

tocMonth Toc month

tocDay Toc day

tocHour Toc hour

tocMinute Toc minute

tocSecond Toc second

clockBias Clock bias (i.e., constant offset) at Toc that should be applied to the satellite time
in order to calculate accurate GPST. In seconds. Often referred to as af0.

clockDrift Clock drift of the satellite clock at Toc that should be applied to the satellite time
in order to calculate accurate GPST. In seconds. Often referred to as af1.

clockDriftRate Rate of change for the clock drift of the satellite clock at Toc. It is frequently
0, but if not, it should be applied in combination with clock bias and clock drift
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in order to correct to GPST as accurately as possible. In seconds per square
second. Often referred to as af2.

IODE Issue-of-data ephemeris. It acts as a time-stamp or unique identifier for the pro-
vided navigation data. In particular, the IODE of a given navigation message
should never be the same as the IODE for any other navigation message broad-
casted by the same satellite in the past 6 days, although violations of this rule
have been observed. Most frequently, IODE are not reused in a period of 7 days,
so that they match exactly the IODC.

radiusCorrectionSine

Amplitude of the sine harmonic component for the correction of orbital radius.
In meters

deltaN Mean motion difference from computed value. In radians per second. In order to
obtain the real (perturbed) mean motion, first the Keplerian mean motion should
be calculated from the semi-major axis. Then, deltaN should be added to it.

correctedMeanMotion

Corrected mean motion calculated by adding deltaN to the value computed from
the semi-major axis. In radians per second

meanAnomaly Mean anomaly of the satellite at epoch. In radians. This indicates where the
satellite is along its orbital path. It is provided as the angle between the direc-
tion of the perigee and the hypothetical point where the object would be if it
was moving in a circular orbit with the same period as its true orbit after the
same amount of time since it last crossed the perigee had ellapsed. Therefore, 0
denotes that the object is at the perigee. This is a Keplerian orbital element.

latitudeCorrectionCosine

Amplitude of the cosine harmonic component for the correction of latitude ar-
gument. In radians

eccentricity Eccentricity of the orbit of the satellite at epoch. This is a Keplerian orbital
element.

latitudeCorrectionSine

Amplitude of the sine harmonic component for the correction of latitude argu-
ment. In radians

semiMajorAxis Semi-major axis of the orbit of the satellite at epoch. In meters. This is a Kep-
lerian orbital element

toeSecondsOfGPSWeek

Time of the GPS week (in seconds) for the ephemeris. Together with the toeGPSWeek,
it can be used to calculate the ephemeris time in GPS time of the specific satel-
lite, to which sequential corrections first to GPST and then to UTC should be
applied.

inclinationCorrectionCosine

Amplitude of the cosine harmonic component for the correction of inclination.
In radians

ascension Longitude of the ascending node of the satellite at epoch, also known as right
ascension of the ascending node, in radians. This is the angle between the direc-
tion of the ascending node (the point where the satellite crosses the equatorial
plane moving north) and the direction of the First Point of Aries (which indicates
the location of the vernal equinox). This is a Keplerian orbital element.
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inclinationCorrectionSine

Amplitude of the sine harmonic component for the correction of inclination. In
radians

inclination Mean orbital inclination of the satellite in radians. This is the angle between the
orbital plane of the satellite and the equatorial plane. This is a Keplerian orbital
element.

radiusCorrectionCosine

Amplitude of the cosine harmonic component for the correction of orbital radius.
In meters.

perigeeArgument

Mean argument of the perigee of the object in radians. This is the angle between
the direction of the ascending node and the direction of the perigee (the point of
the orbit at which the object is closest to the Earth). This is a Keplerian orbital
element.

OMEGADot Angular velocity of the satellite with respect to the vernal equinox. In radi-
ans/second.

codesL2Channel Flag indicating if coarse/acquisition (C/A) code is being transmitted on the L2
channel (value of 1) or not (value of 0)

toeGPSWeek GPS week number at epoch

dataFlagL2P Flag indicating if precise (P) code is being transmitted on the L2 channel (value
of 1) or not (value of 0)

satelliteAccuracy

Accuracy of the position of the satellite, in meters.
satelliteHealthCode

Code indicating the health of the satellite. 0 if healthy.
totalGroupDelay

Bias difference between codes broadcasted on L1 and the ionospheric-free com-
bination of the codes broadcasted at L1 and L2, in seconds. This parameter, also
known as timing group delay (TGD), should be considered when calculating
satellite clock error.

IODC Issue-of-data clock. It acts as a time-stamp or unique identifier for the provided
navigation data. In particular, the IODC of a given navigation message should
never be the same as the IODC for any other navigation message broadcasted by
the same satellite in the past 7 days, although violations of this rule have been
observed. Most frequently, IODE are not reused in a period of 7 days instead of
the mandatory 6 days, so that they match exactly the IODC.

transmissionTime

Transmission time for the navigation message, in seconds of GPS week.

fitInterval Flag indicating for how long the broadcasted ephemeris are valid since the last
time the data was updated. It should be noted that in order to obtain positional
values/orbital elements at times other than epoch, the corrections for perturbed
orbital elements should be applied and propagated. If 0, the ephemeris data are
valid for up to 4 hours. If 1, they are valid for more than 4 hours.

ephemerisUTCTime

A nanotime object indicating the time corresponding to the reported position
(ephemeris) in the present message. The time is in UTC, obtained by first ap-
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plying the individual clock bias, clock drift and clock drift rate of the particu-
lar satellite (fields clockBias, clockDrift and clockDriftRate of each mes-
sage) and a relativistic correction to obtain corrected GPST time (system-wide
GPS time), and then subtraction of leap seconds since the 6th of January 1980
and a second polynomial correction (with fields deltaUTCA0 and deltaUTCA1
from the header) to obtain UTC time. Corrections are performed as described
in the GPS system specifications (https://www.gps.gov/technical/icwg/IS-GPS-
200H.pdf).

position_ITRF Position of the satellite in the ITRF frame, calculated from the provided orbital
ephemeris following the procedure described in the GPS system specifications.
In meters.

velocity_ITRF Velocity of the satellite in the ITRF frame, calculated from the provided orbital
ephemeris following the procedure described in the GPS system specifications.
In meters/second.

acceleration_ITRF

Acceleration of the satellite in the ITRF frame, calculated from the provided
orbital ephemeris following the procedure described in the GPS system specifi-
cations. In meters/squared second.

References

https://gage.upc.edu/gFD/ https://www.navcen.uscg.gov/pubs/gps/rinex/rinex.txt ftp://www.ngs.noaa.gov/cors/RINEX211.txt
http://acc.igs.org/misc/rinex304.pdf https://www.icao.int/Meetings/AMC/MA/2004/GNSS/icd.pdf https://www.gps.gov/technical/icwg/IS-
GPS-200H.pdf

Examples

# The file testGPSRINEXv2.txt provided with the package includes 3 navigation
# messages from 3 GPS satellites

testGPSnav <- readGPSNavigationRINEX(paste0(path.package("asteRisk"),
"/testGPSRINEXv2.txt"))
testGPSnav$header
testGPSnav$messages

readOEM Read an Orbital Ephemeris Message file

Description

OEM (Orbital Ephemeris Message) is one of the three standard file formats defined by the CCSDS
for transferring spacecraft orbit information. OEM files contain the position and velocity of a given
object at multiple times (epochs). They can also contain optionally acceleration values, covariance
matrixes that indicate the uncertainty of the provided state vectors and other additional information.
This function reads OEM files, retrieving also the optional fields.
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Usage

readOEM(filename)

Arguments

filename Path to the OEM file.

Value

A list with two elements. The first element, named header, is a list with the following elements:

OMVersion Version of the OEM format used in the file

creationDate Date of creation of the file

creator Individual or organization that generated the file

The second element is named dataBlocks, and it contains one element for each ephemeris data
block found in the OEM file. Each of these elements is a list with the following elements that
provide information about the ephemerides of object (note that some elements are not mandatory
and therefore might not be present in all OEM files; in these cases, their value is set to NULL):

objectName Name of the object

objectID Object identifier for the object. Frequently, although not always, the identifier
has the format YYYY-NNNPPP, where YYYY is the year of launch, NNN is
the three-digit serial number specifying the launch number during year YYYY
and PPP is a part specifier comprising 1 to 3 capital letters that indicate the part
of the object put into space during the launch.

referenceFrame Frame of reference in which ephemerides are provided.

refFrameEpoch Epoch for the frame of reference, for cases where it is not intrinsic to the frame
itself, such as TEME.

centerName Name of the center of coordinates. For example, a celestial body, the barycenter
of the entire Solar System or even other spacecraft.

timeSystem Time system used for the ephemerides, covariance matrixes and all other time
fields of the data block.

startTime Start time of the time span covered by the ephemerides and covariance matrixes
in this data block.

endTime End time of the time span covered by the ephemerides and covariance matrixes
in this data block.

usableStartTime

Start time of the usable time span covered by the ephemerides and covariance
matrixes in this data block.

usableEndTime End time of the usable time span covered by the ephemerides and covariance
matrixes in this data block.

interpolationMethod

Recommended interpolation method to calculate ephemerides at epochs between
those directly given in the data block.



56 readOEM

interpolationOrder

Recommended interpolation degree to calculate ephemerides at epochs between
those directly given in the data block.

mass Mass in kg of the object.

dragArea Effective area of the object subjected to drag, in square meters.
dragCoefficient

Drag coefficient of the object.

solarRadArea Effective area of the object subjected to solar radiation pressure, in square me-
ters.

solarRadCoefficient

Solar radiation pressure coefficient of the object.

ephemerides Data frame with the 7 or 10 columns providing the ephemerides for the object.
The 1st column provides the epochs for each ephemeris; columns 2 to 4 provide
the X, Y and Z components of position (in km), and columns 5 to 7 provide the
X, Y and Z components of velocity (in km/s). Columns 8 to 10 are optional, and
if present provide the X, Y and Z components of acceleration (in km/s2)

covarianceMatrixes

List where each element is a 3-element list that provides a covariance matrix for
this data block. Each of the 3-element lists corresponding to a covariance matrix
contains the following elements:

• epoch Epoch of the navigation solution related to this covariance matrix.
• referenceFrame Reference frame for the covariance matrix. Frequently this

is the same as for the ephemerides. In order to facilitate interpretation of
the covariance matrix, conversion to a perifocal frame of reference might
be advisable.

• covarianceMatrix Covariance matrix that provides information about the
uncertainties of position and velocities. This is a symmetric 6x6 matrix
where the values in the diagonal are the squared standard deviations of each
variable, and the other values are covariances between 2 variables (those
corresponding to the row and column of each value). The rows and columns
correspond to the following variables, in the specified order: X position, Y
position, Z position, X velocity, Y velocity and Z velocity.

References

https://public.ccsds.org/Pubs/502x0b2c1e2.pdf https://spotthestation.nasa.gov/trajectory_data.cfm

Examples

# The file testOEM.txt provided with the package includes ephemerides data
# for the ISS publicly available

testOEM_ISS <- readOEM(paste0(path.package("asteRisk"), "/testOEM.txt"))
testOEM_ISS$header
testOEM_ISS$dataBlocks[[1]]$objectName
head(testOEM_ISS$dataBlocks[[1]]$ephemerides)
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readTLE Read a TLE file

Description

TLE (Two-/Three- Line Element) is a standard structured text file format for representing orbital
state vectors. This function reads a TLE file containing one or more TLEs. The TLE file can
contain either Two Line Elements or Three Line Elements, but all the TLE in a single file must
be of the same type. The two lines of a Two Line Element contain all the ephemeris information.
The additional line in a Three Line Element is optional, and contains just the satellite name. For a
detailed description of the TLE format, see https://celestrak.com/columns/v04n03/#FAQ01.

Usage

readTLE(filename, maxTLEs=NULL)

Arguments

filename Path to the TLE file. Alternatively, an URL pointing to a TLE file.

maxTLEs Maximum number of TLEs to read, starting from the beginning of the file. By
default, all TLEs present in the file are read.

Value

A list with the following elements that define the orbital state vector of the satellite (or, if the file
contained multiple TLE, a nested list, where each element of the top level list represents an orbital
state vector, and comprises the following elements):

NORADcatalogNumber

NORAD Catalog Number, also known as Satellite Catalog Number, assigned by
United States Space Command to each artificial object orbiting Earth

classificationLevel

Classification level of the information for the orbiting object. Can be unclassi-
fied, classified, secret or unknown

internationalDesignator

International Designator, also known as COSPAR ID, of the object. It consists
of the launch year, separated by a hyphen from a three-digit number indicating
the launch number for that year and a set of one to three letters indicating the
piece for a launch with multiple pieces.

launchYear The launch year of the object

launchNumber The launch number of the object during its launch year

launchPiece The piece for the launch of the object, if it was a launch with multiple pieces

dateTime Date time string to which the orbital state vector corresponds
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elementNumber Element number for the object. In principle, every time a new TLE is generated
for an object, the element number is incremented, and therefore element num-
bers could be used to assess if all the TLEs for a certain object are available.
However, in practice it is observed that this is not always the case, with some
numbers skipped and some numbers repeated.

inclination Mean orbital inclination of the satellite in degrees. This is the angle between the
orbital plane of the satellite and the equatorial plane

ascension Mean longitude of the ascending node of the satellite at epoch, also known as
right ascension of the ascending node, in degrees. This is the angle between the
direction of the ascending node (the point where the satellite crosses the equa-
torial plane moving north) and the direction of the First Point of Aries (which
indicates the location of the vernal equinox)

eccentricity Mean eccentricity of the orbit of the object. Eccentricity is a measurement of
how much the orbit deviates from a circular shape, with 0 indicating a perfectly
circular orbit and 1 indicating an extreme case of parabolic trajectory

perigeeArgument

Mean argument of the perigee of the object in degrees. This is the angle between
the direction of the ascending node and the direction of the perigee (the point of
the orbit at which the object is closest to the Earth)

meanAnomaly Mean anomaly of the orbit of the object in degrees. This indicates where the
satellite is along its orbital path. It is provided as the angle between the direc-
tion of the perigee and the hypothetical point where the object would be if it
was moving in a circular orbit with the same period as its true orbit after the
same amount of time since it last crossed the perigee had ellapsed. Therefore, 0
denotes that the object is at the perigee

meanMotion Mean motion of the satellite at epoch in revolutions/day
meanMotionDerivative

First time derivative of the mean motion of the satellite in revolutions/day^2^
meanMotionSecondDerivative

Second time derivative of the mean motion of the satellite in revolutions/day^3^.

Bstar Drag coefficient of the satellite in units of (earth radii)^-1^. Bstar is an adjusted
value of the ballistic coefficient of the satellite, and it indicates how susceptible
it is to atmospheric drag.

ephemerisType Source for the ephemeris (orbital state vector). Most commonly, it is distributed
data obtained by combaining multiple observations with the SGP4/SDP4 models

epochRevolutionNumber

Number of full orbital revolutions completed by the object

objectName Name of the object, retrieved from the first line of the TLE if a Three Line
Element was provided

References

https://celestrak.org/columns/v04n03/#FAQ01 http://www.celestrak.org/publications/aiaa/2006-6753/AIAA-
2006-6753.pdf
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Examples

# The file testTLE.txt provided with the package includes 29 TLE covering a
# variety of satellites, extracted from Revisiting Space Track Report #3

test_TLEs <- readTLE(paste0(path.package("asteRisk"), "/testTLE.txt"))
test_TLEs

revDay2radMin Converts revolutions per day to radians per minute

Description

This function converts a rotation rate in revolutions per day to radians per minute. This conversion
is useful since values in TLEs are given in revolutions per day, but the SGP4 and SDP4 propagators
require the mean motion to be provided in radians per minute.

Usage

revDay2radMin(revPerDay)

Arguments

revPerDay Value of the rotation rate in revolutions per day.

Value

The corresponding value of the rotation rate in radians per minute.

Examples

revDay2radMin(2)

sdp4 Propagate an orbital state vector with the SDP4 model

Description

Given an orbital state vector of a satellite, applies the SDP4 model to propagate its orbit to the
desired time point. This allows the calculation of the position and velocity of the satellite at dif-
ferent times, both before and after the time corresponding to the known state vector (referred to
as "epoch"). Kepler’s equation is solved through fixed-point integration. The SDP4 model is a
modified version of the SGP4 model that takes into account the secular and periodic perturbations
of the Moon and the Sun on the orbit of the satellite. It also considers the Earth resonance effects
on 24-hour geostationary and 12-hour Molniya orbits. Thanks to this, the SDP4 model can cor-
rectly propagate the orbit of objects in deep space (with orbital periods larger than 225 minutes,
corresponding to altitudes higher than 5877.5 km). However, it should be noted that SDP4 employs
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only simplified drag equations, and lacks corrections for low-perigee orbits. Therefore, it is recom-
mended to apply the standard SGP4 model (available through the sgp4 function) for satellites that
are not in deep space. This implementation is based on a previous SDP4 implementation in Julia
(SatelliteToolbox).

Usage

sdp4(n0, e0, i0, M0, omega0, OMEGA0, Bstar, initialDateTime, targetTime,
keplerAccuracy=10e-12, maxKeplerIterations=10)

Arguments

n0 Mean motion of the satellite at epoch in radians/min.

e0 Mean eccentricity of the orbit of the satellite at epoch. Eccentricity ranges from
0 (perfectly circular orbit) to 1 (parabolic trajectory).

i0 Mean orbital inclination of the satellite at epoch in radians.

M0 Mean anomaly of the satellite at epoch.

omega0 Mean argument of perigee of the satellite at epoch.

OMEGA0 Mean longitude of the ascending node of the satellite at epoch. Also known as
right ascension of the ascending node.

Bstar Drag coefficient of the satellite in units of (earth radii)^-1^. Bstar is an adjusted
value of the ballistic coefficient of the satellite, and it indicates how susceptible
it is to atmospheric drag.

initialDateTime

Date-time string in UTC indicating the time corresponding to the known state
vector of the satellite. Unlike for SGP4, it must be provided in all cases since it
is required to calculate Moon and Sun perturbations.

targetTime Time at which the position and velocity of the satellite should be calculated. It
can be provided in two different ways: either as a number corresponding to the
time in minutes counting from epoch at which the orbit should be propagated,
or as a date-time string in UTC.

keplerAccuracy Accuracy to consider Kepler´s equation solved. If two consecutive solutions
differ by a value lower than this accuracy, integration is considered to have con-
verged.

maxKeplerIterations

Maximum number of iterations after which fixed-point integration of Kepler’s
equation will stop, even if convergence according to the accuracy criterion has
not been reached.

Value

A list with three elements. The first two elements represent the position and velocity of the satellite
at the target time, in the TEME (True Equator, Mean Equinox) frame of reference. Position values
are in km, and velocity values are in km/s. Each of these two elements contains three values,
corresponding to the X, Y and Z components of position and velocity in this order. The third
element indicates the algorithm used to propagate the orbit (sdp4).
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References

https://juliapackages.com/p/satellitetoolbox https://celestrak.org/NORAD/documentation/spacetrk.pdf
http://www.celestrak.org/publications/aiaa/2006-6753/AIAA-2006-6753.pdf

Examples

# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.

n0 <- 1.007781*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 1e-04 # drag coefficient
epochDateTime <- "2006-06-26 00:58:29.34"

# Calculation of the orbital period

2*pi/n0

# The period is higher than 225 min, and therefore the SDP4 model should be
# applied. Furthermore, from the mean motion in revolutions/day, it can be
# seen that it is a geostarionary satellite with a 24-hour period. Let´s
# calculate and compare the position and velocity of the satellite at epoch
# and 1 day later.

state_0 <- sdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=0)

state_1day <- sdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=1440)

state_0
state_1day

# The position and velocity are very similar after a full day, in accordance
# with the geostationary orbit

sgdp4 Propagate an orbital state vector with the SGP4/SDP4 model

Description

Given an orbital state vector of a satellite, applies the SGP4 or SDP4 model to propagate its orbit to
the desired time point, as appropriate depending on the orbital period. The model will be automati-
cally chosen depending on the orbital period. For objects in deep space (with orbital periods larger
than 225 minutes, equivalent to altitudes higher than 5877.5 km) the SDP4 model will be applied.
For objects near Earth (orbital periods shorter than 225 minutes, or altitudes lower than 5877.5 km)
the SGP4 model will be used. It is not recommended to apply SGP4 to objects in deep space or
SDP4 to objects near Earth, but this can be forced by calling directly the sgp4 and sdp4 functions.
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Usage

sgdp4(n0, e0, i0, M0, omega0, OMEGA0, Bstar, initialDateTime=NULL, targetTime,
keplerAccuracy=10e-12, maxKeplerIterations=10)

Arguments

n0 Mean motion of the satellite at epoch in radians/min.

e0 Mean eccentricity of the orbit of the satellite at epoch. Eccentricity ranges from
0 (perfectly circular orbit) to 1 (parabolic trajectory).

i0 Mean orbital inclination of the satellite at epoch in radians.

M0 Mean anomaly of the satellite at epoch.

omega0 Mean argument of perigee of the satellite at epoch.

OMEGA0 Mean longitude of the ascending node of the satellite at epoch. Also known as
right ascension of the ascending node.

Bstar Drag coefficient of the satellite in units of (earth radii)^-1^. Bstar is an adjusted
value of the ballistic coefficient of the satellite, and it indicates how susceptible
it is to atmospheric drag.

initialDateTime

Date-time string in UTC indicating the time corresponding to the known state
vector of the satellite. It must be provided for objects in deep space, and also for
objects near Earth if targetTime is provided as a date-time string.

targetTime Time at which the position and velocity of the satellite should be calculated. It
can be provided in two different ways: either as a number corresponding to the
time in minutes counting from epoch at which the orbit should be propagated, or
as a date-time string in UTC, in which case the date-time string for epoch must
be provided through initialDateTime.

keplerAccuracy Accuracy to consider Kepler´s equation solved. If two consecutive solutions
differ by a value lower than this accuracy, integration is considered to have con-
verged.

maxKeplerIterations

Maximum number of iterations after which fixed-point integration of Kepler’s
equation will stop, even if convergence according to the accuracy criterion has
not been reached.

Value

A list with three elements. The first two elements represent the position and velocity of the satellite
at the target time, in the TEME (True Equator, Mean Equinox) frame of reference. Position values
are in km, and velocity values are in km/s. Each of these two elements contains three values,
corresponding to the X, Y and Z components of position and velocity in this order. The third
element indicates the algorithm used to propagate the orbit (sgp4 or sdp4).

References

https://celestrak.org/NORAD/documentation/spacetrk.pdf http://www.celestrak.org/publications/aiaa/2006-
6753/AIAA-2006-6753.pdf
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Examples

# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.

n0 <- 1.007781*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 1e-04 # drag coefficient
epochDateTime <- "2006-06-26 00:58:29.34"

# Calculation of the orbital period

2*pi/n0

# The period is higher than 225 min, and therefore the SDP4 model should be
# applied. Let´s calculatethe position and velocity of the satellite 12 hours
# after epoch.

italsat_12h <- sgdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=0)

italsat_12h$algorithm

# The SDP4 model was correctly chosen.

sgp4 Propagate an orbital state vector with the SGP4 model

Description

Given an orbital state vector of a satellite, applies the SGP4 model to propagate its orbit to the
desired time point. This allows the calculation of the position and velocity of the satellite at dif-
ferent times, both before and after the time corresponding to the known state vector (referred to as
"epoch"). Kepler’s equation is solved through fixed-point integration. The SGP4 model can only
accurately propagate the orbit of objects near Earth (with an orbital period shorter than 225 minutes,
corresponding approximately to an altitude lower than 5877.5 km). For propagation of objects in
deep space, the SDP4 model should be used, available through the sdp4 function. This implemen-
tation is based on the theory and implementation described in Space Track Report #3, and includes
the corrections summarized in Revisiting Space Track Report #3.

Usage

sgp4(n0, e0, i0, M0, omega0, OMEGA0, Bstar, initialDateTime=NULL, targetTime,
keplerAccuracy=10e-12, maxKeplerIterations=10)
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Arguments

n0 Mean motion of the satellite at epoch in radians/min.

e0 Mean eccentricity of the orbit of the satellite at epoch. Eccentricity ranges from
0 (perfectly circular orbit) to 1 (parabolic trajectory).

i0 Mean orbital inclination of the satellite at epoch in radians.

M0 Mean anomaly of the satellite at epoch.

omega0 Mean argument of perigee of the satellite at epoch.

OMEGA0 Mean longitude of the ascending node of the satellite at epoch. Also known as
right ascension of the ascending node.

Bstar Drag coefficient of the satellite in units of (earth radii)^-1^. Bstar is an adjusted
value of the ballistic coefficient of the satellite, and it indicates how susceptible
it is to atmospheric drag.

initialDateTime

Optional date-time string in UTC indicating the time corresponding to the known
state vector of the satellite. It must be provided if targetTime is provided as a
date-time string.

targetTime Time at which the position and velocity of the satellite should be calculated. It
can be provided in two different ways: either as a number corresponding to the
time in minutes counting from epoch at which the orbit should be propagated, or
as a date-time string in UTC, in which case the date-time string for epoch must
be provided through initialDateTime.

keplerAccuracy Accuracy to consider Kepler´s equation solved. If two consecutive solutions
differ by a value lower than this accuracy, integration is considered to have con-
verged.

maxKeplerIterations

Maximum number of iterations after which fixed-point integration of Kepler’s
equation will stop, even if convergence according to the accuracy criterion has
not been reached.

Value

A list with three elements. The first two elements represent the position and velocity of the satellite
at the target time, in the TEME (True Equator, Mean Equinox) frame of reference. Position values
are in km, and velocity values are in km/s. Each of these two elements contains three values,
corresponding to the X, Y and Z components of position and velocity in this order. The third
element indicates the algorithm used to propagate the orbit (sgp4).

References

https://celestrak.org/NORAD/documentation/spacetrk.pdf http://www.celestrak.org/publications/aiaa/2006-
6753/AIAA-2006-6753.pdf

Examples

# The following orbital parameters correspond to an object with NORAD catalogue
# number 88888 the 1st of October, 1980 at 23:41:24 UTC.
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n0 <- 16.05824518*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.0086731 # mean eccentricity at epoch
i0 <- 72.8435*pi/180 # mean inclination at epoch in radians
M0 <- 110.5714*pi/180 # mean anomaly at epoch in radians
omega0 <- 52.6988*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 115.9689*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 0.66816e-4 # drag coefficient

# Calculation of the orbital period

2*pi/n0

# The period is lower than 225 min, and therefore the SGP4 model is valid.
# Let´s calculate the position and velocity of the satellite 40 minutes after
# epoch

new_state <- sgp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar,targetTime = 40)

new_state

TEMEtoGCRF Convert coordinates from TEME to GCRF

Description

The TEME (True Equator, Mean Equinox) and GCRF (Geocentric Celestial Reference Frame) are
both ECI frames of reference, i.e., Earth-centered inertial coordinate frames, where the origin is
placed at the center of mass of Earth and the coordinate frame is fixed with respect to the stars (and
therefore not fixed with respect to the Earth surface in its rotation).

The difference between the two resides in the fact that in the GCRF frame, the X-axis and Z-axis
are aligned respectively with the mean equinox and rotation axis of Earth at 12:00 Terrestrial Time
on the 1st of January, 2000, while in the TEME frame they are aligned with the mean equinox and
rotation axis at the time of the corresponding TLE. Due to the change of the direction of the vernal
equinox and the rotation axis over time, coordinates in the two frames differ slightly.

The function implement 2 algorithms. The default one applies first a transformation to ITRF using
the algorithm implemented by David A. Vallado in the teme2ecef routine, followed by a transforma-
tion to GCRF using nutation-precesion-bias and polar motion matrices (transformation for velocity
takes into account variations in Earth’s rotation speed through length of day data provided by IERS).
The second one follows the same procedure implemented by NAIF in the SPICE routine ZZTEME,
and is provided for cases where users aim to reproduce SPICE’s output.

This function requires the asteRiskData package, which can be installed by running install.packages('asteRiskData',
repos='https://rafael-ayala.github.io/drat/')

Usage

TEMEtoGCRF(position_TEME, velocity_TEME, dateTime, SPICEAlgorithm, ephemerisTime)
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Arguments

position_TEME Vector with the X, Y and Z components of the position of an object in TEME
frame, in m.

velocity_TEME Vector with the X, Y and Z components of the velocity of an object in TEME
frame, in m/s.

dateTime Date-time string with the date and time in UTC corresponding to the provided
position and velocity vectors. This specifies the time for which the conversion
from TEME to GCRF coordinates will be performed. It is required due to the
change in the exact position of the rotation axis of Earth due to precesion, nuta-
tion and polar motion. Either dateTime or ephemerisTime must be provided.

SPICEAlgorithm Logical indicating if the algorithm implemented in SPICE’s ZZTEME routine
should be used instead of the default algorithm. By default, SPICEAlgorithm=FALSE,
and SPICE’s algorithm is not applied.

ephemerisTime Time in TDB seconds since J2000 for which the conversion from TEME to
GCRF coordinates will be performed. This is also known as "ephemeris time"
in SPICE. Either dateTime or ephemerisTime must be provided.

Value

A list with two elements representing the position and velocity of the satellite in the ECEF (Earth
Centered, Earth Fixed) frame of reference. Position values are in m, and velocity values are in m/s.
Each of the two elements contains three values, corresponding to the X, Y and Z components of
position and velocity in this order.

References

https://celestrak.org/columns/v04n03/#FAQ01

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.

n0 <- 1.007781*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 1e-04 # drag coefficient
epochDateTime <- "2006-06-26 00:58:29.34"

# Let´s calculate the position and velocity of the satellite 1 day later

state_1day_TEME <- sgdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=1440)

# We can now convert the results in TEME frame to GCRF frame, previously
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# multiplying by 1000 to convert the km output of sgdp4 to m

state_1day_GCRF <- TEMEtoGCRF(state_1day_TEME$position*1000,
state_1day_TEME$velocity*1000,
"2006-06-27 00:58:29.34")

}

TEMEtoITRF Convert coordinates from TEME to ITRF

Description

The TEME (True Equator, Mean Equinox) frame of reference is an Earth-centered inertial coor-
dinate frame, where the origin is placed at the center of mass of Earth and the coordinate frame
is fixed with respect to the stars (and therefore not fixed with respect to the Earth surface in its
rotation). The coordinates and velocities calculated with the SGP4 and SDP4 models are in the
TEME frame of reference. This function converts positions and velocities in TEME to the ITRF
(International Terrestrial Reference Frame), which is an ECEF (Earth Centered, Earth Fixed) frame
of reference. In the ITRF, the origin is also placed at the center of mass of Earth, but the frame
rotates with respect to the stars to remain fixed with respect to the Earth surface as it rotates. The
Z-axis extends along the true North as defined by the IERS reference pole, and the X-axis extends
towards the intersection between the equator and the Greenwich meridian at any time.

This function requires the asteRiskData package, which can be installed by running install.packages('asteRiskData',
repos='https://rafael-ayala.github.io/drat/')

Usage

TEMEtoITRF(position_TEME, velocity_TEME, dateTime)

Arguments

position_TEME Vector with the X, Y and Z components of the position of an object in TEME
frame, in m.

velocity_TEME Vector with the X, Y and Z components of the velocity of an object in TEME
frame, in m/s.

dateTime Date-time string with the date and time in UTC corresponding to the provided
position and velocity vectors. This specifies the time for which the conversion
from TEME to ITRF coordinates will be performed. It is important to provide
an accurate value, since the point over the surface of Earth to which a set of
TEME coordinates refers varies with time due to the motion of Earth.

Value

A list with two elements representing the position and velocity of the satellite in the ITRF (Inter-
national Terrestrial Reference Frame) frame of reference. Position values are in m, and velocity
values are in m/s. Each of the two elements contains three values, corresponding to the X, Y and Z
components of position and velocity in this order.
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References

https://celestrak.org/columns/v04n03/#FAQ01

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.

n0 <- 1.007781*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 1e-04 # drag coefficient
epochDateTime <- "2006-06-26 00:58:29.34"

# Let´s calculate the position and velocity of the satellite 1 day later

state_1day_TEME <- sgdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=1440)

# We can now convert the results in TEME frame to ITRF frame, previously
# multiplying by 1000 to convert the km output of sgdp4 to m

state_1day_ITRF <- TEMEtoITRF(state_1day_TEME$position*1000,
state_1day_TEME$velocity*1000,
"2006-06-27 00:58:29.34")

}

TEMEtoLATLON Convert coordinates from TEME to geodetic latitude, longitude and
altitude

Description

The TEME (True Equator, Mean Equinox) frame of reference is an Earth-centered inertial coordi-
nate frame, where the origin is placed at the center of mass of Earth and the coordinate frame is
fixed with respect to the stars (and therefore not fixed with respect to the Earth surface in its rota-
tion). The coordinates and velocities calculated with the SGP4 and SDP4 models are in the TEME
frame of reference. This function converts position in TEME to geodetic latitude, longitude and
altitude, which can be considered to be a non-inertial, Earth-centered frame of reference.

Usage

TEMEtoLATLON(position_TEME, dateTime, degreesOutput=TRUE)
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Arguments

position_TEME Vector with the X, Y and Z components of the position of an object in TEME
frame, in m.

dateTime Date-time string with the date and time in UTC corresponding to the provided
position vector. This specifies the time for which the conversion from TEME
to geodetic coordinates will be performed. It is important to provide an accu-
rate value, since the point over the surface of Earth to which a set of TEME
coordinates refers varies with time due to the motion of Earth.

degreesOutput Logical indicating if the output should be in sexagesimal degrees. If degreesOutput=FALSE,
the output will be in radians.

Value

A vector with three elements, corresponding to the latitude and longitude in degrees (or radians if
specified) and the altitude in m.

References

https://arc.aiaa.org/doi/10.2514/6.2006-6753

Examples

if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.

n0 <- 1.007781*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 1e-04 # drag coefficient
epochDateTime <- "2006-06-26 00:58:29.34"

# Let´s calculate the position and velocity of the satellite 1 day later

state_1day_TEME <- sgdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=1440)

# We can now convert the results in TEME frame to geodetic latitude, longitude
# and altitude, previously multiplying by 1000 to convert the km output of
# sgdp4 to m

state_1day_geodetic <- TEMEtoLATLON(state_1day_TEME$position*1000,
"2006-06-27 00:58:29.34")

}
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